ICRA Workshop: «International experiences in Potable Reuse»

Wolfgang Gernjak presentando el Workshop

Aprovechando las sinergias del position paper posteado en este mismo blog sobre reutilización con fines potables, el pasado viernes 4 de octubre estuve de oyente en el workshop organizado por el ICRA sobre este mismo tema aplicado a experiencias internacionales.

Después de una breve introducción a cargo de Wolfgang Gernjak, Investigador Senior del grupo ICRATech, tomó la palabra el primer ponente, el profesor de la Universidad de Berkeley (California) y especialista en recursos hídricos David Sedlak, el cual hizo una aproximación a la situación de la reutilización con fines potables (también conocida como reutilización potable) en Estados Unidos y los posibles avances de cara al futuro. Fue una charla muy interesante donde el profesor Sedlak nos habló de la importancia de la legitimidad de la tecnología para que esta sea aceptada a nivel general. Esta legitimidad, se compone de 3 dimensiones: la pragmática, la moral y la cognitiva.

El segundo ponente, Antoni Munné, Responsable del Departamento de Calidad de las Aguas de la ACA, introdujo su ponencia relacionando el proceso de cambio climático actual en relación a las previsiones de caras a los próximos 10-30 años en materia de precipitaciones y temperaturas medias en la zona mediterránea. En resumen, se espera una mayor variabilidad en las lluvias, un aumento progresivo de las temperaturas medias y una reducción de precipitaciones de entre un 5-10% en 2030 y de un 15-20% en 2050, pudiendo ser éstas de un 15-30% en época estival.

En la segunda parte de su exposición, Munné presentó los avances del estudio monitorizado por el panel de expertos sobre los niveles de contaminantes emergentes en las aguas regeneradas de la ERA de El Prat de Llobregat, con el fin de, en un futuro próximo poder reutilizarlas con fines potables en el área metropolitana de Barcelona.

El tercer y último ponente del workshop, Lluís Sala, Responsable del Área de Abastecimiento y Reutilización del Consorci de la Costa Brava, hizo un diagnóstico sobre la reutilización potable en la Costa Brava explicando el caso paradigmático de El Port de la Selva y el proyecto DEMOWARE. Esta población costera tenía las características adecuadas para poder acoger una parte del proyecto: variabilidad en las precipitaciones, aislada geográficamente, alta demanda en época estival, tratamiento terciario en funcionamiento desde el año 2000, interés de la administración local, etc.

En el apartado de financiación, Sala remarcó que las inversiones cercanas a 1 millón de euros durante un período de 16 años apoyando la reutilización de agua regenerada en el Port de la Selva, han dado muy buenos resultados en materia de eliminación de contaminantes emergentes:

De todas formas, en el desarrollo del proyecto Demoware en Port de la Selva se observaron una serie de problemas inesperados como el incremento de salinidad debido a las sequías de los últimos años en la zona así como la presencia de concentraciones relativamente elevadas de biocidas que son recalcitrantes a ser eliminados:

En definitiva, los resultados del proyecto DEMOWARE en el caso de Port de la Selva instan a seguir profundizando en varios aspectos que quedan abiertos como la forma de evitar la salinización puntual en períodos de sequía (ósmosis inversa?) o la eliminación (quizás con tecnologías de oxidación avanzada) de contaminantes emergentes. Superar estos retos podría ser objeto de un nuevo proyecto complementario que arrojaría luz a los claroscuros planteados en esta ponencia.

Grupo ICRATech (II): reutilización de aguas con fines potables

Porque no nos deberíamos olvidar de la posibilidad de reutilizar agua para fines potables*

La economía circular, la estrategia de las 3R (reducción, reutilización, reciclado) y la industria 4.0 – estos son los axiomas que tanto les gusta proclamar actualmente a los políticos y a los líderes empresariales. Sin embargo, es importante destacar que la reutilización del agua es una realidad desde mucho antes que estos eslóganes se hayan hecho populares, y de hecho implementa todos los principios de la economía circular. 

La aceptación de la reutilización del agua para uso potable – o reutilización potable, derivado de la terminología anglosajona – ha aumentado considerablemente estos últimos años como una práctica que, correctamente gestionada, puede ser implementada de un modo seguro. En este breve artículo queremos revisar como los ejemplos aplicados recientemente a gran escala en todo el mundo, las iniciativas industriales y los avances científicos, muestran que la reutilización potable es una alternativa interesante a considerar en el portafolio de las actuaciones existentes para combatir la escasez del agua.

Diferencias conceptuales entre reutilización potable de facto, indirecta y directa. Imagen: Eden et al (2016), Potable reuse of water: A view from Arizona
https://wrrc.arizona.edu/sites/wrrc.arizona.edu/files/July-2016-IMPACT-Potable-AZ.pdf

Los beneficios obvios

Hay una serie de beneficios que no dejan lugar a duda cuando se debate sobre la reutilización de agua. Entre ellos, se reduce la cantidad de agua que se extrae y la que se vierte en el ciclo natural del agua. Esto puede ser beneficioso para mantener los caudales y la calidad aguas abajo de las grandes ciudades en cuencas que sufren problemas de escasez. También disminuye la presión aguas arriba sustituyendo parte de la extracción necesaria para abastecer la población. Al contrario que con otras fuentes alternativas de agua como la de escorrentía de lluvia (de suelos o de tejados), el efluente de una Estación Depuradora de Aguas Residuales (EDAR) tiene una menor variabilidad de cantidad y calidad, lo que supone una gran ventaja en la planificación y diseño de las infraestructuras. Finalmente, la reutilización potable requiere una demanda energética por metro cúbico de agua producido del orden de entre una tercera y cuarta parte respecto al consumo energético de la desalinización de agua de mar, otra fuente alternativa de recursos hídricos en zonas costeras.

Cabe destacar también que críticos de la reutilización potable argumentan que es mejor centrarse en la reutilización para riego en la agricultura. Lo cierto es que estas zonas que demandan un uso intensivo del agua suelen estar lejos del punto donde se genera el agua regenerada en las grandes ciudades, por lo que los costes de construcción de las infraestructuras necesarias para transportar el agua, unidos al requerimiento energético del bombeo, penalizan el interés económico de dicha opción cuando el sector agrícola se centra en productos con un limitado retorno de la inversión.

¿Es seguro?

Los ciudadanos se preguntan, con razón, si es seguro beber agua regenerada. Por otro lado, los políticos y responsables de la toma de decisiones, aunque acepten la viabilidad técnica y el poco riesgo para la salud pública, pueden tener dudas comprensibles respecto a la aceptación pública general y a su capacidad de generar confianza entre la población respecto al concepto de beber agua regenerada.

El primer comentario al respecto es que si estamos dispuestos a mirar lo suficientemente lejos, como por ejemplo a los Estados Unidos, Singapur, o Australia, podemos confirmar con toda confianza que se ha acumulado una gran cantidad de evidencias y experiencia a gran escala en aplicaciones de esquemas de tratamiento de aguas residuales para reutilización potable. Desde el punto de vista de calidad y seguridad del agua servida, estas instalaciones han estado suministrando agua en continuo de una gran calidad, en algunos casos desde décadas. De hecho, la ciencia ha demostrado repetidamente que la reutilización potable planificada en la que se aplican esquemas de tratamiento avanzado suministra un agua de mayor calidad que la práctica habitual de muchas Estaciones de Tratamiento de Aguas Potables (ETAP) convencionales que captan el agua superficial de un rio aguas abajo de una gran ciudad que ha vertido sus aguas residuales tratadas. Este esquema, conocido con el nombre de reutilización de facto para potabilización, es habitual en la mayoría de los ríos europeos como el Rin, el Támesis, o el Danubio o también localmente en el Río Llobregat por dar algunos ejemplos. 

Desarrollo en reutilización de aguas

Vamos a estudiar con mayor profundidad las herramientas disponibles para asegurar la reutilización segura para potabilización directa y los avances realizados durante estas últimas décadas.

Para empezar, varias tecnologías utilizadas en los esquemas de tratamiento como la ósmosis inversa o la oxidación avanzada han alcanzado un elevadísimo grado de madurez. Dichos avances han penetrado en el sector del agua a través de todo el proceso de producción, tanto en los procesos de ensamblaje de los módulos de membranas de ósmosis inversa, como en los protocolos de mantenimiento empleados en las estaciones de tratamiento avanzado de aguas residuales. Así mismo, nuestro conocimiento de las tecnologías más convencionales como la ozonización, la adsorción en carbón activo o el simple uso de reactivos químicos para la desinfección, también ha aumentado considerablemente durante estos últimos años. Al mismo tiempo, vemos en un horizonte cercano la irrupción de tecnologías innovadoras como los sistemas integrados de membranas con nuevos materiales, nuevos procesos de oxidación avanzada, o las tecnologías de tratamiento electroquímicos, que pronto se incluirán en el amplio repertorio de herramientas disponibles para potenciar la reutilización de agua.

Nuestro conocimiento respecto a los contaminantes y a la química del agua también ha aumentado. Ya cada vez se producen menos sorpresas desagradables de compuestos que se creían que eran benignos y posteriormente se identificó su potencial peligro, como por ejemplo pasó con las sustancias perfluorinadas. Estos ejemplos nos han puesto sobre aviso, y demuestran la necesidad de permanecer alerta sobre la amenaza potencial de cualquier compuesto desconocido, aunque es indudable el progreso llevado a cabo en estos últimos años.

En la actualidad, se han desarrollado y popularizado potentes métodos numéricos de computación que, entre otras aplicaciones, permiten generar de un modo más rápido y económico datos simulados que reproducen el comportamiento experimental. Existe una amplia variabilidad de aplicaciones de estos métodos computacionales, de los cuales tan solo unos pocos de describen a continuación: un ejemplo sería el establecimiento de relaciones cuantitativas entre la estructura y la actividad (QSAR) para simular y predecir el comportamiento de contaminantes conocidos y desconocidos basados en propiedades moleculares, reales o inventadas, en procesos de tratamiento que permiten cubrir cualquier eventualidad posible. El desarrollo de procesos asistidos con diseño de fluidos computacional facilita el diseño del tratamiento biológico de aguas residuales o los fotorreactores que aplican radiación ultravioleta para la destrucción de contaminantes, entre otros. También podemos simular largas series de datos de operación de años de una instalación de tratamiento para evaluar el impacto de fallos estocásticos de equipos u otros accidentes mediante simulaciones de Monte Carlo en el riesgo de calidad del agua. El aprendizaje automático para aprender de experiencias en la operación de procesos empieza a ser una realidad en la industria en general, y también en el sector de la reutilización de agua. 

A modo de resumen, sabemos que un tren de tratamiento avanzado, correctamente diseñado y operado, es capaz de controlar adecuadamente el riesgo de calidad del agua. También existe buenas guías de gestión del riesgo, basada en el método de Evaluación de Riesgos y Puntos Críticos de Control (Hazard Assessment and Critical Control Point, HACCP), desarrollado inicialmente en la industria alimentaria. Específicamente, la industria del agua ha puesto especial énfasis en la identificación y desarrollo de sensores que garantizan el correcto funcionamiento de las barreras individuales en los trenes de tratamiento, necesario para la implementación del concepto de control de puntos críticos.

El éxito de los casos de estudio disponibles a nivel internacional no se debería analizar solamente desde un punto de vista técnico de la calidad del agua. Estos casos también nos enseñan como se puede comunicar efectivamente a los ciudadanos, cual es el papel que juega la educación, y muchos otros aspectos relevantes para su aceptación social. De hecho, también podemos aprender de esos casos en que los proyectos de reutilización potable no fueron implementados debido a la oposición ejercida por los ciudadanos, al poco compromiso político, o a otras razones de mayor complejidad.

Volviendo finalmente a la cuestión sobre la seguridad de la reutilización potable: no estamos diciendo “despreocúpate o relájate” – tan solo estamos evidenciando que se dispone de multitud de herramientas que nos pueden hacer sentir más confiados, y que el riesgo de fallo o accidente es muy bajo si estas herramientas se utilizan de un modo eficiente y consciente. 

¿Es eficiente? ¿Y viable económicamente?

Entonces, si has leído hasta este punto, probablemente te estés preguntando la siguiente cuestión fundamental: ¿Cuánto cuesta y cuál es la eficiencia de la potabilización directa del agua?

Déjanos responder de un modo evasivo en primer lugar haciéndote un par de preguntas: ¿Cuál sería un precio justo para el agua potable? ¿Estás dispuesto a gastar más dinero para pagar la factura de tu teléfono móvil o para disponer de agua corriente potable de máxima calidad en tu grifo a todas horas? 

Membranas de Osmosis Inversa del sistema de inyección al subsuelo de agua regenerada de Orange County, California, USA.https://www.ocwd.com/gwrs/the-process/

Respondiendo de un modo más directo a la pregunta, es evidente que el coste y el requerimiento energético para potabilizar este recurso hídrico alternativo (el agua residual) es significativamente mayor que el necesario para potabilizar agua superficial prístina. Pero entonces, de nuevo, comparado con otras fuentes alternativas de agua que a veces parecen más factibles, como el agua de lluvia, la confianza es mayor y el coste puede ser inferior. El sistema de tratamiento avanzado más completo, que incluye prefiltración con membranas de baja presión, filtración de ósmosis inversa, y posterior oxidación o por lo menos desinfección puede ser operado con un requerimiento energético menor a 1 kWh/m3. Existen otros trenes de tratamiento, de menor coste energético, que incluyen ozono y biofiltración, cuyo estadio de desarrollo parece indicar que serán adecuados y sostenibles para la potabilización directa segura. En cualquier caso, la potabilización directa requiere menor energía que la desalación del agua de mar, ETAPs que requieren bombeo y distribución del agua producida a grandes distancias, y que muchos sistemas descentralizados, cuya desfavorable economía de escala suele implicar grandes consumos energéticos debido a la baja eficiencia de los pequeños equipos. Además, el régimen de operación en discontinuo de los sistemas descentralizados suele afectar negativamente en los costes de inversión respecto a los sistemas centralizados bien planificados que operan en un régimen en continuo 7/24.

¿Hay otros beneficios?

Hasta el momento hemos hablado ampliamente de los aparentes beneficios sobre la cantidad del recurso hídrico, sobre la calidad y la seguridad, y un poco sobre costes y consumos energéticos. Pero, quizás, aunque más escondidos e indirectos, pueden existir otros beneficios y oportunidades.

En el siglo XXI y en el contexto de la economía circular, solemos proclamar la transición de nuestras EDAR convencionales en fábricas de recuperación de recursos. Tradicionalmente, la operación del tratamiento de aguas residuales se ha centrado en la oportunidad para recuperar energía a través de generar metano en procesos anaeróbicos además de nutrientes a través de precipitación de estruvita u otras tecnologías. Al mismo tiempo la eliminación de nutrientes puede ayudar a la operación de muchas tecnologías avanzadas de tratamiento de aguas (por ejemplo, en el control del ensuciamiento por fosfato cálcico en la filtración por ósmosis inversa). Parece pues que existen oportunidades para desarrollar sinergias entre la recuperación de los nutrientes y del agua. Del mismo modo, se puede pensar como la recuperación de la energía se conecta con la recuperación de nutrientes y agua. Y ¿Quién sabe? Quizás en el futuro la recuperación de metales del agua residual será viable y económicamente rentable, especialmente del rechazo de la ósmosis inversa y de otras corrientes concentradas.

Finalmente, las EDARs siempre han sido considerados como una fuente de contaminación antropogénica en el ciclo natural del agua, aportando nutrientes y otros compuestos químicos orgánicos e inorgánicos. Actualmente, que nos regimos por el principio reconocido de que el contamina paga (tal y como dictamina la Directiva Marco del Agua), los beneficios de la reutilización del agua pueden proporcionar una gran oportunidad para disminuir el impacto y la presión ambiental de las grandes ciudades. Especialmente, una de las principales amenazas de la descarga del agua residual tratada se relaciona con la propagación de los genes de resistencia a los antibióticos. En este contexto, el tratamiento avanzado de los efluentes secundarios puede convertirse en un requerimiento, más que en una simple opción.

Agua residual, efluente de salida de EDAR y agua purificada ya apta para su reutilización. Fuente: https://commons.wikimedia.org/w/index.php?curid=45828357

El papel de la ciencia

Como nota final, nos gustaría proponer una lista de tareas a las que podemos contribuir como científicos, sin la pretensión de que la lista sea exhaustiva ni completa.

En primer lugar, pese a la disponibilidad de diversas operaciones unitarias suficientemente maduras, no deberíamos cesar el desarrollo de nuevas tecnologías y estrategias de tratamiento. Esto incluye la integración de soluciones de tratamientos basados en la naturaleza y control de contaminación en el origen.

En el contexto de un ciclo urbano del agua cada vez más complejo que conecta sistemas centralizados y descentralizados para optimizar su rendimiento desde un punto de vista económico, social y ambiental, necesitaremos soluciones para disponer de distintos tipos y calidades del agua. Tal y como se ha comentado con anterioridad, debemos contribuir explorando y desarrollando soluciones creativas y sinergias potenciales en un ciclo del agua con múltiples conexiones que se rijan por los paradigmas de la economía circular. 

En segundo lugar, todavía existen cuestiones no resueltas por lo que respecta al impacto de la descarga del agua residual y las oportunidades de tratamiento avanzadas para mitigar dichos efectos y potenciar, a su vez, los beneficios de la reutilización. Algunas de estas dudas están relacionadas con las principales amenazas del siglo XXI, como la resistencia a los antibióticos.

Finalmente, por lo que respecta a la comunicación y difusión de las soluciones para la sociedad, debemos implicarnos en el debate generado y actuar como embajadores del conocimiento.

En el Instituto Catalán de Investigación del Agua (ICRA) disponemos de expertos relacionados con muchos de los aspectos de la reutilización potable; ingenieros que trabajan en tecnologías de tratamiento, químicos que analizan los riesgos relacionados con los contaminantes emergentes y los subproductos de desinfección, y microbiólogos que investigan los mecanismos de transferencia de los genes de la resistencia a los antibióticos. Como científicos que somos, estamos comprometidos con el desarrollo positivo de la sociedad, y, por ello, mantenemos las puertas abiertas para hablar y discutir con todos ustedes respecto a este tema y a otros relacionados con el agua.

*Documento escrito por Wolfgang Gernjak con la colaboración de Joaquim Comas, Ignasi Rodríguez-Roda y María José Farré, investigadores del grupo ICRAtech en el Institut Català de Recerca de l’Aigua (ICRA).

RECONOCIMIENTOS:

  • Los autores quieren agradecer el apoyo del Departament d’Economia i Coneixement del Gobierno catalán a través del Grupo de Investigación Consolidado (ICRA-TECNOLOGÍA – 2017 SGR 1318).

CODA

Este artículo sirve de introducción al próximo Workshop organizado por el ICRA sobre Reutilización de aguas con fines potables que tendrá lugar el próximo 4 de octubre de 2019 de las 10h a las 15h. + INFO AQUÍ.

Entrevista a Antoni Ventura-Ribal

Como ya os comenté la semana pasada hoy toca audioentrevista en el blog. Antoni Ventura-Ribal, gerente de Aigües de Manresa, nos da su opinión sobre gestión, precio del agua, reguladores únicos (o no), innovación… además de reutilización y adaptación social a ella. En definitiva, repasando a vista de pájaro todos estos conceptos nos ha pasado el tiempo volando 😉 por lo que ya estoy pensando en una futura ampliación de la entrevista…


Las sinergias del agua regenerada

El agua de origen

La EDAR de Castell-Platja d’Aro dispone de un tratamiento terciario capaz de producir agua regenerada para potenciales usuarios interesados, ahorrando de forma diaria unos 6000 m3 que de otro modo serían captados del acuífero del río Ridaura.

Este terciario funciona desde el 1998, mejorando de forma significativa su gestión a partir de la automatización del control de parámetros en 2012. Jordi Muñoz, Jefe de Proceso de la depuradora, remarca la importancia de tener un agua de salida del tratamiento secundario de calidad: «Si tenemos unos buenos parámetros el tratamiento terciario no sufrirá y obtendremos una agua apta para su reutilización. Si no fuera así, podría darse un exceso de turbidez y colmataciones regulares de los filtros de arena». Debido a esta potencial problemática, si los lazos de control detectan un nivel de turbidez por encima del límite establecido se cierra la compuerta que deriva el agua depurada a estos filtros. Otro control fundamental es el redox presente en el agua después de ser clorada: «Estamos entre los 250 y 350 mV para asegurar la desinfección total y ausencia de E. coli«.

El control de la instalación se hace por SCADA, así se ve de forma rápida si hay alguna desviación que afecte el rendimiento del terciario para poder actuar y avisar los usuarios afectados:

El esquema de tratamiento terciario del EDAR de Castell-Platja d’Aro es el siguiente: filtros de arena y desinfección mediante luz ultravioleta e hipoclorito sódico. «En nuestro caso, la presencia de sales de hierro en el agua provoca una disminución de la transmitancia causando una reducción en el rendimiento de desinfección de la luz UV», puntualiza Muñoz, «a pesar de que elimina bien los clostridios y huevos de nemátodos».

Tanto la depuradora como el tratamiento terciario de regeneración es explotado de forma integral por la misma empresa concesionaria, EMACBSA. Muñoz justifica una de las ventajas de que sea así: «Somos los primeros interesados en obtener un agua de calidad del decantador secundario para no tener problemas en el terciario. Si estuviese repartido en dos explotadores costaría más de coordinar, además de la falta de incentivos por una de las partes».

En 2017, el terciario ha aportado unos 800000 m3 desglosados de la siguiente manera:

  • 300000 m3 Golf d’Aro-Mas Nou.
  • 210000 m3 Golf Costa Brava.
  • 160000 m3 Regante principal (campos de maíz).
  • 100000 m3 Comunidad de regantes del entorno de la EDAR.
  • 30000 m3 Pitch & Putt Mas Torrellas.

El agua ya regenerada es bombeada y repartida en tres líneas principales para llegar a todos estos usuarios, los cuales pagan por la gestión diaria del tratamiento terciario: reposición de cloro, analíticas de control, componentes del sistema de desinfección por UV, etc.

Al final de la visita Muñoz reflexiona sobre el valor de este agua: «Gracias a la aportación de agua regenerada el acuífero puede respirar, sobre todo en la época de verano ya que esta zona es muy turística. Pensándolo bien, el terciario hace que el agua tenga un coste razonable que, en su ausencia y en épocas de sequía prolongada, podría llegar a ser mucho más elevado».

Golf Costa Brava

Después de la visita a la EDAR me he desplazado hasta el Golf Costa Brava, en Santa Cristina d’Aro, para hablar con Benjamí Ferrer, actual greenkeeper y responsable de la gestión hídrica: «El Golf Costa Brava fue de los primeros en plantearse la opción de regar con agua regenerada debido a la evolución de los campos hacia una imagen cuidada más extensiva, más allá del espacio de juego. A partir de este momento en que se amplía este espacio de riego nos encontramos con problemas durante los veranos… los pozos de la zona ya no daban para más». También menciona la figura clave de Xavier Millet en la puesta en marcha del proyecto: «Él lo inició, construyéndose los 2 km de tubería que van desde la depuradora de Castell d’Aro hasta este golf».

Para Ferrer, lo más importante de todo es que ahora disponen de agua los 365 días del año, no tienen que sufrir por la falta de ésta y el nivel freático de la zona lo agradece, pero también hay algún inconveniente: «Los niveles de nitrógeno amoniacal elevados nos perjudican. Al final hemos optado por montar un sistema de tratamiento mediante ozono previo al riego. No es óptimo para la remoción de nutrientes pero almenos elimina el biofilm que se forma en las paredes del colector y los malos olores derivados».

Campo del Golf Costa Brava

Riego de cultivo de maíz

Joan Pijoan es el responsable de una explotación ganadera de producción de leche al por mayor. También dispone de varios campos donde planta, entre otros cereales, maíz. Desde el 2004 es usuario del agua regenerada del terciario de Castell-Platja d’Aro: «Estoy bastante satisfecho, sobre todo cuando empezamos a ver de que en verano nos quedábamos cortos de agua a pesar de disponer de varios pozos propios. De las 50 Ha de campo productivo, la mitad la regamos con agua regenerada». También me comenta la agilidad en llevar a la práctica la conexión a la red: «Fue relativamente fácil, puesto que tan sólo tuvimos que alargar un poco más el colector que ya llegaba al Golf Costa Brava, unos 3 Km», explica Pijoan. De este modo, tanto el golf como la explotación ganadera forman una mini comunidad de regantes que puede ser una buena experiencia para iniciativas futuras.

Por lo que respecta a la presencia de nitrógeno, al contrario de Ferrer, él lo ve como una ventaja al reducir el uso de nutrientes externos: «Gasto mucho menos fertilizante que cuando capto agua de pozo». Sin embargo, Pijoan también ve algún inconveniente: «La administración es muy exigente con el hecho de no pasarnos de los límites recomendables de nitrogeno a nivel ambiental, en este sentido hay margen para la mejora».

Aigua regenerada
Campos de maíz regados con agua regenerada

 

Entrevista a Ignasi Rodríguez-Roda Layret (II)

– Tu periplo investigador empieza con la tesis doctoral.

Sí, la hice en el campo de la Inteligencia Artificial aplicada a las depuradoras de aguas residuales, pero era 1998 y el Big Data y Data Mining aún estaban muy poco desarrollados. En definitiva, los datos «objetivos» del momento eran mayoritariamente de mala calidad, y por lo tanto, nos centrábamos más en la percepción que tenía en cada momento el jefe de planta: olores, colores, funcionamento de la línea de fangos, etc.

– Fuisteis unos avanzados a vuestra época.

Puede ser… hace poco que las grandes empresas del sector del agua han empezado a hablar de forma habitual de la IA. De alguna forma el concepto ha traspasado los centros de investigación, entrando con fuerza en la industria y ya es una realidad para varios sectores.

– Desde que estás en el ICRA trabajas con varias tecnologías, concretamente con membranas.

Sí, trabajamos con diferentes tipos como son membranas de terciario, desalinización, osmosis inversa y directa…. Pero también tenemos una segunda línea de investigación igualmente importante dedicada a la eliminación de fármacos; hacemos el seguimiento y vemos como se transforman en el medio acuático, como se eliminan, la toxicidad, etc. El ICRA es referente en tomar las medidas.

– Relacionado con el tema de membranas, has mencionado la Osmosis Directa. Es una tecnología interesante porque reduce mucho el consumo energético en comparación con la inversa, aunque tiene algunos inconvenientes…

Efectivamente, aún le queda un largo camino por recorrer, tan solo hay 3 o 4 empresas que se dedican a esta tecnología en el mundo y hay ciertos problemas con el tipo de solución salina a utilizar. También tenemos una legislación incompleta en reutilización y la reposición de estas membranas no tiene la misma agilidad que las convencionales, estos inconvenientes sumados al cálculo de retorno económico hacen que las empresas vean con cierta cautela su uso en la industria.

– Hablando de empresas, participaste en un estudio en reutilización de aguas grises en un hotel de la Costa Brava. Sale a cuenta?

Económicamente hablando el hotel no nota este ahorro ya que la factura del agua es una parte pequeña de sus gastos totales, y si lo miramos por el lado del consumo de agua tampoco. Pero si un día el ayuntamiento impone restricciones por sequía es evidente que tendran una ventaja competitiva. Luego también hay un tema de promoción como empresa ambientalmente responsable, que ahora mismo sería dar un ejemplo de cara al uso sostenible del recurso.

Font: Dutch Water Sector

– Y una mejora de la Huella Hídrica

Desde luego, pero soy bastante escéptico al respecto. Reconozco el valor de concienciación del concepto pero creo que es muy difícil de calcular porque los criterios son demasiado dispares para tener una visión global significativa.

– «Comparativa a gran escala de varias tecnologías en agua reciclada, con especial émfasis en MBR». Me puedes explicar el objetivo de este artículo en el que has colaborado recientemente?

Este artículo lo escribimos debido a la ausencia de datos reales a gran escala de este tipo de tecnología, y por eso acabó saliendo en The MBR site. Los datos, que son de las licitaciones de las plantas , se pueden consultar en el CEDEX. Una vez recopiladas y analizadas vimos que los MBR eran bastante competitivos en comparación con los terciarios convencionales, además de que se obtiene una agua final de gran calidad.

– Así, en contra del tópico no hay tanta diferencia para contar con ellos en tratamiento terciario.

Sí, pero hay que tener en cuenta qué uso le queremos dar al agua producida, la queremos para regar campos de golf? Regadío? Recargar un acuífero? Baldeo de calles? O quizás para reutilización como agua potable…

– Y en función de este uso final construir la tecnología que se adapte mejor?

Efectivamente, lo que pasa es que en Catalunya mayoritariamente se ha construido por circunstancias que no tienen mucho que ver con este criterio.

– Es decir, se vierte al río sin reaprovecharla…

Y si esta tecnología la comparas con una EDAR convencional ya no sale a cuenta, porque aparte de desaprovechar este agua para reutilización el sistema con MBR suele ser un 20% mas caro. Un esfuerzo en vano. Continúa leyendo Entrevista a Ignasi Rodríguez-Roda Layret (II)