Agua y COVID-19: lecciones aprendidas y retos futuros*

*Artículo elaborado por el Campus de l’Aigua de la Universitat de Girona y dado a conocer el pasado 5 de junio de 2020, Día Mundial del Medio Ambiente.

La pandemia de la COVID-19, enfermedad respiratoria causada por el virus SARS-CoV-2, ha provocado el cese de la actividad y el confinamiento de la población de forma global, con el aislamiento social como estrategia para parar la propagación masiva del virus. Esta situación, impensable unos meses atrás, ha condicionado la actividad económica y social y ha impactado fuertemente en la vida de las personas a nivel individual, familiar y laboral.
Los investigadores y las investigadoras del Campus de l’Aigua de la Universitat de Girona creemos oportuno compartir nuestros conocimientos, observaciones y reflexiones sobre esta situación única que nos ha comportado la pandemia, desde diferentes ámbitos relacionados con el agua. Nos planteamos también cuál tiene que ser el futuro y los retos a los que se tendrá que enfrentar el sector del agua.

Ecosistemas y salud humana

El agua y los ecosistemas acuáticos son esenciales para el mantenimiento de la biodiversidad y el bienestar de la población, pero la crisis que vivimos ha evidenciado la extrema relación entre la integridad de los ecosistemas y la salud de los humanos. Más allá de las causas concretas de la transmisión del virus, todavía por establecer, una consideración que se puede extender a la relación entre humanos y sistemas naturales es que estamos llevándolos al límite de su capacidad de resistencia. El crecimiento demográfico, la intensificación de las actividades agrícolas e industriales y el cambio climático ejercen una presión constante sobre estos ecosistemas, favoreciendo la aparición, propagación o resurgimiento de enfermedades infecciosas.
El uso excesivo de los recursos naturales (el agua entre ellos), junto con la llegada constante de contaminantes (sean químicos, físicos o biológicos), hace que los ecosistemas pierdan parte de su capacidad de resistencia y se vuelvan más frágiles.
También tenemos que considerar que en las últimas décadas estamos explotando nuevos hábitats y especies, desde los bosques más escondidos hasta los fondos marinos más profundos que habían permanecido aislados durante siglos. Estos nuevos contactos nos exponen a nuevos virus, bacterias o parásitos y pueden surgir, por lo tanto, nuevas enfermedades. Tenemos que estar preparados y la investigación tiene un papel fundamental.

Efectos de la crisis de la COVID-19 en el agua y los sistemas acuáticos

El confinamiento de la población ha tenido incidencia en el consumo de agua. El descenso ha sido especialmente acusado en cuanto a usos industriales y de servicios (como el comercial o el vinculado al turismo). En cambio, como resultado del confinamiento de la población en sus hogares y los cambios en sus hábitos de consumo (debido al énfasis en el aseo personal y del hogar), han producido un incremento en el consumo de agua para usos domésticos.
La pandemia ha tenido también grandes efectos en relación a mares y océanos. En las últimas décadas, el transporte marítimo ha sido uno de los grandes símbolos de la globalización. Con la pandemia, una de las primeras víctimas ha sido esta primigenia forma de comunicación y comercio. Parece que de la globalización pasaremos a la regionalización globalizada, pero el eje vertebrador, el entramado de esta nueva globalización, continuará siendo, sin duda, el transporte marítimo global, aquel que sobreviva a la crisis.
A pesar de que pueda parecer anecdótico o menor, uno de los cambios importantes que se han producido y se producirá raíz de la COVID-19 tiene que ver con la imagen que hasta ahora teníamos, y el uso que hacíamos, del mar a través de los cruceros. De repente, han pasado de ser paradigma y símbolo del turismo de las clases medias a transformarse en lugares de confinamiento obligado y de peligro de contagio en territorio de nadie. Es bien seguro que esta experiencia ayudará al replanteamiento de uno de los grandes mitos de la sociedad de consumo, el goce del mar de espaldas al mar.
Uno de los efectos más populares y celebrados del confinamiento en relación al mar es la cantidad de avistamientos de gran fauna marina cerca de las costas; en mismo Cap de Creus (Costa Brava) se han visto rorcuales comunes en grupos, centenares de delfines y tiburones peregrinos de medida considerable. El confinamiento ha permitido que nuestro ecosistema marino “respirara” un poco. Así, esta parada forzosa de actividades ha supuesto una pequeña y efímera oportunidad de recuperación de las poblaciones marinas, muchas de ellas en situación vulnerable.
Respecto a las aguas subterráneas, es conocido el potencial transporte de virus, algunos de ellos patógenos, a través de su flujo. Sin embargo, el subsuelo ya presenta varios sistemas naturales de eliminación, ya sea por filtración (poco importante debido al tamaño de los virus), adsorción a las partículas minerales del suelo (muy eficiente) e inactivación por los largos tiempos de tráfico de las aguas subterráneas y que pueden ir de varios meses a muchos años desde la infiltración hasta la captación para uso humano. Además de estos factores naturales limitantes de la pervivencia de los virus en los acuíferos, ante la cuestión de si los recursos subterráneos pueden contener el coronavirus causante de la COVID-19 hay que considerar varios aspectos. Primero, la entrada de este virus en los acuíferos solo puede producirse a través de fosas sépticas o conductos que lleven agua residual no tratada y tengan pérdidas en el subsuelo, o bien por la infiltración de ríos o balsas que hayan recibido aguas residuales urbanas. Segundo, los informes indican que el tratamiento en las plantas depuradoras supone la eliminación total del virus y que los tratamientos de depuración antes de introducir el agua potable en las redes de distribución urbana desactivan su capacidad de infección. Por lo tanto, el consumo doméstico de agua potable de red, sea procedente de ríos o de acuíferos, es seguro.

El ciclo urbano del agua ha tenido un papel relevante, sin hacerse notar. Todos hemos tenido confianza en el agua que nos llegaba, no ha habido prácticamente ninguna crisis por motivo del agua y además ha sido un elemento importante en la lucha contra la COVID-19, puesto que ha permitido seguir las recomendaciones de higiene de manos con agua y jabón. Y esto se ha conseguido gracias a un sobreesfuerzo del sector. Muchas plantas de tratamiento han tenido a sus trabajadores confinados en las mismas para evitar cualquier riesgo, «viviendo» en la propia instalación para asegurar la continuidad del servicio. Esto ha evidenciado de que este sector es un sector maduro, que dispone de buena tecnología, de buenos profesionales y de una elevada fiabilidad en conjunto.

Retos del sector

El acceso al agua es un derecho humano básico para la salud de las personas. El problema principal, pero, es que en muchos hogares del mundo no disponen de agua y, por lo tanto, no reúnen las condiciones mínimas necesarias para hacer frente a la pandemia. La pobreza hídrica crea situaciones de desigualdad social frente a la COVID-19 y, en general, ante cualquier emergencia.
La actividad marítima pesquera, a pesar de ser tratada como un sector primario estrategico esencial, con el confinamiento ha evidenciado su gran vulnerabilidad. Vulnerabilidad que no solo es fruto de la incapacidad del medio para la renovación de los recursos naturales (debido a la acción antrópica centrada fundamentalmente en la sobrepesca), la contaminación, y el cambio climático… el cierre de restaurantes ha supuesto el paro de muchas lonjas de forma temporal y, consiguientemente, una bajada importante de la actividad pesquera. Se prevé que la recuperación será lenta, con pequeños cambios adaptativos, pero se producirá. Ahora bien, el problema, en general, continúa siendo cultural: el pez es visto como un alimento especial y diferente. Hay la necesidad de mantener los recursos alimentarios locales, y en este sentido, la sobreexplotación actual es preocupante desde el punto de vista no solo de abastecimiento sino también en términos de salud. Hay que adoptar una gestión integrada y global de la salud ambiental y humana.
En general, hay que entender mejor la capacidad de resistencia de los sistemas naturales a las perturbaciones que reciben; algunas naturales (como el Gloria, que recientemente los impactó); otros ligados a la acción humana (extracción de agua, contaminantes). La concatenación de unas y otras puede comportar consecuencias desconocidas.
Respeto el ciclo del agua, hay que integrar mejor el ciclo natural con el urbano, incluyendo las aguas antes de ser usadas y después de serlo, en un único marco de referencia. Tenemos que saber como se retroalimentan unas y otras y cuáles son los impactos reales que ponen las perturbaciones sobre su capacidad conjunta de carga. En sistemas muy complejos como los hidrológicos, hace falta una mirada integradora y transdisciplinaria.

También es muy importante asegurar la calidad del agua. La preocupación inicial por la posible presencia del virus SARS-CoV-2 en las aguas subterráneas sirve de recordatorio de la importancia de protegerse contra los patógenos mediante el cuidado y mantenimiento adecuados de pozos y sistemas sépticos, consideración que es inherente a los sistemas públicos de suministro de agua potable. Hay que aumentar los controles de calidad y apostar por la innovación en el sector de potabilización y depuración. Los retos en este sentido son varios, como el desarrollo de nuevos sensores y metodologías de análisis, gestión de datos y procesamiento de las mismas, diseño de nuevos equipos autónomos que puedan trabajar a distancia minimizando el riesgo del trabajadores, así como modelos más precisos en los procesos de tratamiento y gestión para asegurar la eficacia bajo condiciones cambiantes, entre otros. Muy relacionado con el hecho de combatir el virus está el amplio uso de desinfectantes empleados tanto en los hogares como en las calles de pueblos y ciudades. Estos pueden tener graves efectos en el medio ambiente y en las plantas de tratamiento de agua que hay que estudiar en profundidad. Los desinfectantes no solo pueden dañar directamente el ecosistema sino que también pueden reaccionar con la materia orgánica presente en el agua para generar subproductos de desinfección potencialmente tóxicos para la salud pública.

Cuál tiene que ser el futuro?

La crisis de la COVID-19 junto con los efectos del cambio climático sobre los recursos hídricos tienen que estar presentes en el diseño de políticas públicas de gestión de los recursos hídricos.
Se debe impulsar mucho más la prevención de la salud y la conservación de los ecosistemas acuáticos, ya que van e irán cada vez más relacionados entre sí. El medio natural no solo nos aporta alimentos saludables y de proximidad sino también lugares donde practicar actividades de recreo beneficiosas para la salud física y mental. Esto se ha hecho especialmente evidente durante esta crisis en poblaciones con falta de zonas verdes. En este sentido, una mayor implementación de sistemas inspirados en la naturaleza (nature-based solutions) para afrontar diferentes retos ambientales y socioeconómicos facilitará la transición hacia ciudades más más sostenibles, resilientes y justas.
Se vislumbra también un mayor control de la calidad microbiológica tanto de las aguas potables como de las regeneradas. No solo evaluando la posible presencia o cantidad de microorganismos, sino también en la migración de estos en el subsuelo, las posibles fuentes y su posible transmisión desde los acuíferos a otros ambientes acuáticos. Se pone en valor la microbiología ambiental como herramienta de estudio de los procesos biogeoquímicos dentro de un contexto hidrogeológico correctamente caracterizado, así como su relevancia en términos de salud pública.

Parece también claro que aumentará la digitalización del ciclo urbano del agua, con más cantidad de sensores para medir on-line la calidad del agua en diferentes puntos del ciclo. En este sentido, harán falta también nuevas herramientas analíticas, metodológicas e instrumentales, rápidas y fiables, para ayudar a la toma de decisiones. El uso de esta información servirá no solo para mejorar la calidad del servicio sino para ir más allá. La llamada “sewer epidemiology” puede permitir identificar y predecir nuevos focos de infecciones empleando el material genético que se encuentra en las aguas residuales. Debemos enfatizar el hecho que este material genético no tiene capacidad de infección ni puede convertirse en un factor de transmisión del virus hacia el ser humano. En términos económicos, se tendrán que establecer unos criterios políticos que garanticen el sostenimiento de las instalaciones y el servicio de agua para todo el mundo, especialmente ante la crisis económica que se divisa.
Teniendo en cuenta que hará falta innovación, la Universidad y los centros de investigación tenemos la responsabilidad de jugar un papel relevante en la definición de la nueva normalidad en el sector del agua. Podemos aportar conocimiento en diferentes ámbitos tecnológicos y científicos pero nos equivocaríamos si pensáramos solo en términos técnicos. La COVID-19 es también una crisis social y desde la Universidad tenemos el deber y el deseo de implicarnos y de participar en las soluciones que la sociedad pide.
En este sentido, el Campus de l’Aigua es una herramienta que la Universitat de Girona pone a disposición de la sociedad para dar respuesta a las necesidades del territorio fomentando la interacción con las empresas, entidades y ciudadanía, para encarar conjuntamente los retos que como sociedad tenemos por delante.
Sirvan estas observaciones como punto de partida para una reflexión más amplia para poner en valor los recursos hídricos, su calidad y su relación con la sociedad.

*Elaborado por el Campus de l’Aigua de la Universitat de Girona con la participación y las contribuciones de las siguientes unidades:

  • Centro de Geología y Cartografía Ambiental (GEOCAMB)
  • Grupo de investigación en Biodiversidad y recursos marinos (GRMar)
  • Grupo de investigación en Ecología Acuática Continental (GRECO)
  • Grupo de investigación en Ecosistemas Marinos y Salud Humana (SeaHealth)
  • Grupo de Ecología Microbiana Molecular (GEMM)
  • Grupo de investigación Medio ambiente y tecnologías de la Información Geográfica
  • Grupo de investigación de Química Analítica y Ambiental
  • Laboratorio de Ingeniería Química Ambiental (LEQUIA)
  • ICRA, áreas de Recursos y Ecosistemas, Calidad del agua y Tecnologías y evaluación
  • Instituto de Ecología Acuática Instituto de Medio Ambiente
  • Cátedra Agua, Naturaleza y Bienestar
  • Cátedra de Estudios Marítimos
  • Cátedra de Geografía y Pensamiento Territorial Cátedra Océanos y Salud Humana

ICRA Workshop: «International experiences in Potable Reuse»

Wolfgang Gernjak presentando el Workshop

Aprovechando las sinergias del position paper posteado en este mismo blog sobre reutilización con fines potables, el pasado viernes 4 de octubre estuve de oyente en el workshop organizado por el ICRA sobre este mismo tema aplicado a experiencias internacionales.

Después de una breve introducción a cargo de Wolfgang Gernjak, Investigador Senior del grupo ICRATech, tomó la palabra el primer ponente, el profesor de la Universidad de Berkeley (California) y especialista en recursos hídricos David Sedlak, el cual hizo una aproximación a la situación de la reutilización con fines potables (también conocida como reutilización potable) en Estados Unidos y los posibles avances de cara al futuro. Fue una charla muy interesante donde el profesor Sedlak nos habló de la importancia de la legitimidad de la tecnología para que esta sea aceptada a nivel general. Esta legitimidad, se compone de 3 dimensiones: la pragmática, la moral y la cognitiva.

El segundo ponente, Antoni Munné, Responsable del Departamento de Calidad de las Aguas de la ACA, introdujo su ponencia relacionando el proceso de cambio climático actual en relación a las previsiones de caras a los próximos 10-30 años en materia de precipitaciones y temperaturas medias en la zona mediterránea. En resumen, se espera una mayor variabilidad en las lluvias, un aumento progresivo de las temperaturas medias y una reducción de precipitaciones de entre un 5-10% en 2030 y de un 15-20% en 2050, pudiendo ser éstas de un 15-30% en época estival.

En la segunda parte de su exposición, Munné presentó los avances del estudio monitorizado por el panel de expertos sobre los niveles de contaminantes emergentes en las aguas regeneradas de la ERA de El Prat de Llobregat, con el fin de, en un futuro próximo poder reutilizarlas con fines potables en el área metropolitana de Barcelona.

El tercer y último ponente del workshop, Lluís Sala, Responsable del Área de Abastecimiento y Reutilización del Consorci de la Costa Brava, hizo un diagnóstico sobre la reutilización potable en la Costa Brava explicando el caso paradigmático de El Port de la Selva y el proyecto DEMOWARE. Esta población costera tenía las características adecuadas para poder acoger una parte del proyecto: variabilidad en las precipitaciones, aislada geográficamente, alta demanda en época estival, tratamiento terciario en funcionamiento desde el año 2000, interés de la administración local, etc.

En el apartado de financiación, Sala remarcó que las inversiones cercanas a 1 millón de euros durante un período de 16 años apoyando la reutilización de agua regenerada en el Port de la Selva, han dado muy buenos resultados en materia de eliminación de contaminantes emergentes:

De todas formas, en el desarrollo del proyecto Demoware en Port de la Selva se observaron una serie de problemas inesperados como el incremento de salinidad debido a las sequías de los últimos años en la zona así como la presencia de concentraciones relativamente elevadas de biocidas que son recalcitrantes a ser eliminados:

En definitiva, los resultados del proyecto DEMOWARE en el caso de Port de la Selva instan a seguir profundizando en varios aspectos que quedan abiertos como la forma de evitar la salinización puntual en períodos de sequía (ósmosis inversa?) o la eliminación (quizás con tecnologías de oxidación avanzada) de contaminantes emergentes. Superar estos retos podría ser objeto de un nuevo proyecto complementario que arrojaría luz a los claroscuros planteados en esta ponencia.

Grupo ICRATech (II): reutilización de aguas con fines potables

Porque no nos deberíamos olvidar de la posibilidad de reutilizar agua para fines potables*

La economía circular, la estrategia de las 3R (reducción, reutilización, reciclado) y la industria 4.0 – estos son los axiomas que tanto les gusta proclamar actualmente a los políticos y a los líderes empresariales. Sin embargo, es importante destacar que la reutilización del agua es una realidad desde mucho antes que estos eslóganes se hayan hecho populares, y de hecho implementa todos los principios de la economía circular. 

La aceptación de la reutilización del agua para uso potable – o reutilización potable, derivado de la terminología anglosajona – ha aumentado considerablemente estos últimos años como una práctica que, correctamente gestionada, puede ser implementada de un modo seguro. En este breve artículo queremos revisar como los ejemplos aplicados recientemente a gran escala en todo el mundo, las iniciativas industriales y los avances científicos, muestran que la reutilización potable es una alternativa interesante a considerar en el portafolio de las actuaciones existentes para combatir la escasez del agua.

Diferencias conceptuales entre reutilización potable de facto, indirecta y directa. Imagen: Eden et al (2016), Potable reuse of water: A view from Arizona
https://wrrc.arizona.edu/sites/wrrc.arizona.edu/files/July-2016-IMPACT-Potable-AZ.pdf

Los beneficios obvios

Hay una serie de beneficios que no dejan lugar a duda cuando se debate sobre la reutilización de agua. Entre ellos, se reduce la cantidad de agua que se extrae y la que se vierte en el ciclo natural del agua. Esto puede ser beneficioso para mantener los caudales y la calidad aguas abajo de las grandes ciudades en cuencas que sufren problemas de escasez. También disminuye la presión aguas arriba sustituyendo parte de la extracción necesaria para abastecer la población. Al contrario que con otras fuentes alternativas de agua como la de escorrentía de lluvia (de suelos o de tejados), el efluente de una Estación Depuradora de Aguas Residuales (EDAR) tiene una menor variabilidad de cantidad y calidad, lo que supone una gran ventaja en la planificación y diseño de las infraestructuras. Finalmente, la reutilización potable requiere una demanda energética por metro cúbico de agua producido del orden de entre una tercera y cuarta parte respecto al consumo energético de la desalinización de agua de mar, otra fuente alternativa de recursos hídricos en zonas costeras.

Cabe destacar también que críticos de la reutilización potable argumentan que es mejor centrarse en la reutilización para riego en la agricultura. Lo cierto es que estas zonas que demandan un uso intensivo del agua suelen estar lejos del punto donde se genera el agua regenerada en las grandes ciudades, por lo que los costes de construcción de las infraestructuras necesarias para transportar el agua, unidos al requerimiento energético del bombeo, penalizan el interés económico de dicha opción cuando el sector agrícola se centra en productos con un limitado retorno de la inversión.

¿Es seguro?

Los ciudadanos se preguntan, con razón, si es seguro beber agua regenerada. Por otro lado, los políticos y responsables de la toma de decisiones, aunque acepten la viabilidad técnica y el poco riesgo para la salud pública, pueden tener dudas comprensibles respecto a la aceptación pública general y a su capacidad de generar confianza entre la población respecto al concepto de beber agua regenerada.

El primer comentario al respecto es que si estamos dispuestos a mirar lo suficientemente lejos, como por ejemplo a los Estados Unidos, Singapur, o Australia, podemos confirmar con toda confianza que se ha acumulado una gran cantidad de evidencias y experiencia a gran escala en aplicaciones de esquemas de tratamiento de aguas residuales para reutilización potable. Desde el punto de vista de calidad y seguridad del agua servida, estas instalaciones han estado suministrando agua en continuo de una gran calidad, en algunos casos desde décadas. De hecho, la ciencia ha demostrado repetidamente que la reutilización potable planificada en la que se aplican esquemas de tratamiento avanzado suministra un agua de mayor calidad que la práctica habitual de muchas Estaciones de Tratamiento de Aguas Potables (ETAP) convencionales que captan el agua superficial de un rio aguas abajo de una gran ciudad que ha vertido sus aguas residuales tratadas. Este esquema, conocido con el nombre de reutilización de facto para potabilización, es habitual en la mayoría de los ríos europeos como el Rin, el Támesis, o el Danubio o también localmente en el Río Llobregat por dar algunos ejemplos. 

Desarrollo en reutilización de aguas

Vamos a estudiar con mayor profundidad las herramientas disponibles para asegurar la reutilización segura para potabilización directa y los avances realizados durante estas últimas décadas.

Para empezar, varias tecnologías utilizadas en los esquemas de tratamiento como la ósmosis inversa o la oxidación avanzada han alcanzado un elevadísimo grado de madurez. Dichos avances han penetrado en el sector del agua a través de todo el proceso de producción, tanto en los procesos de ensamblaje de los módulos de membranas de ósmosis inversa, como en los protocolos de mantenimiento empleados en las estaciones de tratamiento avanzado de aguas residuales. Así mismo, nuestro conocimiento de las tecnologías más convencionales como la ozonización, la adsorción en carbón activo o el simple uso de reactivos químicos para la desinfección, también ha aumentado considerablemente durante estos últimos años. Al mismo tiempo, vemos en un horizonte cercano la irrupción de tecnologías innovadoras como los sistemas integrados de membranas con nuevos materiales, nuevos procesos de oxidación avanzada, o las tecnologías de tratamiento electroquímicos, que pronto se incluirán en el amplio repertorio de herramientas disponibles para potenciar la reutilización de agua.

Nuestro conocimiento respecto a los contaminantes y a la química del agua también ha aumentado. Ya cada vez se producen menos sorpresas desagradables de compuestos que se creían que eran benignos y posteriormente se identificó su potencial peligro, como por ejemplo pasó con las sustancias perfluorinadas. Estos ejemplos nos han puesto sobre aviso, y demuestran la necesidad de permanecer alerta sobre la amenaza potencial de cualquier compuesto desconocido, aunque es indudable el progreso llevado a cabo en estos últimos años.

En la actualidad, se han desarrollado y popularizado potentes métodos numéricos de computación que, entre otras aplicaciones, permiten generar de un modo más rápido y económico datos simulados que reproducen el comportamiento experimental. Existe una amplia variabilidad de aplicaciones de estos métodos computacionales, de los cuales tan solo unos pocos de describen a continuación: un ejemplo sería el establecimiento de relaciones cuantitativas entre la estructura y la actividad (QSAR) para simular y predecir el comportamiento de contaminantes conocidos y desconocidos basados en propiedades moleculares, reales o inventadas, en procesos de tratamiento que permiten cubrir cualquier eventualidad posible. El desarrollo de procesos asistidos con diseño de fluidos computacional facilita el diseño del tratamiento biológico de aguas residuales o los fotorreactores que aplican radiación ultravioleta para la destrucción de contaminantes, entre otros. También podemos simular largas series de datos de operación de años de una instalación de tratamiento para evaluar el impacto de fallos estocásticos de equipos u otros accidentes mediante simulaciones de Monte Carlo en el riesgo de calidad del agua. El aprendizaje automático para aprender de experiencias en la operación de procesos empieza a ser una realidad en la industria en general, y también en el sector de la reutilización de agua. 

A modo de resumen, sabemos que un tren de tratamiento avanzado, correctamente diseñado y operado, es capaz de controlar adecuadamente el riesgo de calidad del agua. También existe buenas guías de gestión del riesgo, basada en el método de Evaluación de Riesgos y Puntos Críticos de Control (Hazard Assessment and Critical Control Point, HACCP), desarrollado inicialmente en la industria alimentaria. Específicamente, la industria del agua ha puesto especial énfasis en la identificación y desarrollo de sensores que garantizan el correcto funcionamiento de las barreras individuales en los trenes de tratamiento, necesario para la implementación del concepto de control de puntos críticos.

El éxito de los casos de estudio disponibles a nivel internacional no se debería analizar solamente desde un punto de vista técnico de la calidad del agua. Estos casos también nos enseñan como se puede comunicar efectivamente a los ciudadanos, cual es el papel que juega la educación, y muchos otros aspectos relevantes para su aceptación social. De hecho, también podemos aprender de esos casos en que los proyectos de reutilización potable no fueron implementados debido a la oposición ejercida por los ciudadanos, al poco compromiso político, o a otras razones de mayor complejidad.

Volviendo finalmente a la cuestión sobre la seguridad de la reutilización potable: no estamos diciendo “despreocúpate o relájate” – tan solo estamos evidenciando que se dispone de multitud de herramientas que nos pueden hacer sentir más confiados, y que el riesgo de fallo o accidente es muy bajo si estas herramientas se utilizan de un modo eficiente y consciente. 

¿Es eficiente? ¿Y viable económicamente?

Entonces, si has leído hasta este punto, probablemente te estés preguntando la siguiente cuestión fundamental: ¿Cuánto cuesta y cuál es la eficiencia de la potabilización directa del agua?

Déjanos responder de un modo evasivo en primer lugar haciéndote un par de preguntas: ¿Cuál sería un precio justo para el agua potable? ¿Estás dispuesto a gastar más dinero para pagar la factura de tu teléfono móvil o para disponer de agua corriente potable de máxima calidad en tu grifo a todas horas? 

Membranas de Osmosis Inversa del sistema de inyección al subsuelo de agua regenerada de Orange County, California, USA.https://www.ocwd.com/gwrs/the-process/

Respondiendo de un modo más directo a la pregunta, es evidente que el coste y el requerimiento energético para potabilizar este recurso hídrico alternativo (el agua residual) es significativamente mayor que el necesario para potabilizar agua superficial prístina. Pero entonces, de nuevo, comparado con otras fuentes alternativas de agua que a veces parecen más factibles, como el agua de lluvia, la confianza es mayor y el coste puede ser inferior. El sistema de tratamiento avanzado más completo, que incluye prefiltración con membranas de baja presión, filtración de ósmosis inversa, y posterior oxidación o por lo menos desinfección puede ser operado con un requerimiento energético menor a 1 kWh/m3. Existen otros trenes de tratamiento, de menor coste energético, que incluyen ozono y biofiltración, cuyo estadio de desarrollo parece indicar que serán adecuados y sostenibles para la potabilización directa segura. En cualquier caso, la potabilización directa requiere menor energía que la desalación del agua de mar, ETAPs que requieren bombeo y distribución del agua producida a grandes distancias, y que muchos sistemas descentralizados, cuya desfavorable economía de escala suele implicar grandes consumos energéticos debido a la baja eficiencia de los pequeños equipos. Además, el régimen de operación en discontinuo de los sistemas descentralizados suele afectar negativamente en los costes de inversión respecto a los sistemas centralizados bien planificados que operan en un régimen en continuo 7/24.

¿Hay otros beneficios?

Hasta el momento hemos hablado ampliamente de los aparentes beneficios sobre la cantidad del recurso hídrico, sobre la calidad y la seguridad, y un poco sobre costes y consumos energéticos. Pero, quizás, aunque más escondidos e indirectos, pueden existir otros beneficios y oportunidades.

En el siglo XXI y en el contexto de la economía circular, solemos proclamar la transición de nuestras EDAR convencionales en fábricas de recuperación de recursos. Tradicionalmente, la operación del tratamiento de aguas residuales se ha centrado en la oportunidad para recuperar energía a través de generar metano en procesos anaeróbicos además de nutrientes a través de precipitación de estruvita u otras tecnologías. Al mismo tiempo la eliminación de nutrientes puede ayudar a la operación de muchas tecnologías avanzadas de tratamiento de aguas (por ejemplo, en el control del ensuciamiento por fosfato cálcico en la filtración por ósmosis inversa). Parece pues que existen oportunidades para desarrollar sinergias entre la recuperación de los nutrientes y del agua. Del mismo modo, se puede pensar como la recuperación de la energía se conecta con la recuperación de nutrientes y agua. Y ¿Quién sabe? Quizás en el futuro la recuperación de metales del agua residual será viable y económicamente rentable, especialmente del rechazo de la ósmosis inversa y de otras corrientes concentradas.

Finalmente, las EDARs siempre han sido considerados como una fuente de contaminación antropogénica en el ciclo natural del agua, aportando nutrientes y otros compuestos químicos orgánicos e inorgánicos. Actualmente, que nos regimos por el principio reconocido de que el contamina paga (tal y como dictamina la Directiva Marco del Agua), los beneficios de la reutilización del agua pueden proporcionar una gran oportunidad para disminuir el impacto y la presión ambiental de las grandes ciudades. Especialmente, una de las principales amenazas de la descarga del agua residual tratada se relaciona con la propagación de los genes de resistencia a los antibióticos. En este contexto, el tratamiento avanzado de los efluentes secundarios puede convertirse en un requerimiento, más que en una simple opción.

Agua residual, efluente de salida de EDAR y agua purificada ya apta para su reutilización. Fuente: https://commons.wikimedia.org/w/index.php?curid=45828357

El papel de la ciencia

Como nota final, nos gustaría proponer una lista de tareas a las que podemos contribuir como científicos, sin la pretensión de que la lista sea exhaustiva ni completa.

En primer lugar, pese a la disponibilidad de diversas operaciones unitarias suficientemente maduras, no deberíamos cesar el desarrollo de nuevas tecnologías y estrategias de tratamiento. Esto incluye la integración de soluciones de tratamientos basados en la naturaleza y control de contaminación en el origen.

En el contexto de un ciclo urbano del agua cada vez más complejo que conecta sistemas centralizados y descentralizados para optimizar su rendimiento desde un punto de vista económico, social y ambiental, necesitaremos soluciones para disponer de distintos tipos y calidades del agua. Tal y como se ha comentado con anterioridad, debemos contribuir explorando y desarrollando soluciones creativas y sinergias potenciales en un ciclo del agua con múltiples conexiones que se rijan por los paradigmas de la economía circular. 

En segundo lugar, todavía existen cuestiones no resueltas por lo que respecta al impacto de la descarga del agua residual y las oportunidades de tratamiento avanzadas para mitigar dichos efectos y potenciar, a su vez, los beneficios de la reutilización. Algunas de estas dudas están relacionadas con las principales amenazas del siglo XXI, como la resistencia a los antibióticos.

Finalmente, por lo que respecta a la comunicación y difusión de las soluciones para la sociedad, debemos implicarnos en el debate generado y actuar como embajadores del conocimiento.

En el Instituto Catalán de Investigación del Agua (ICRA) disponemos de expertos relacionados con muchos de los aspectos de la reutilización potable; ingenieros que trabajan en tecnologías de tratamiento, químicos que analizan los riesgos relacionados con los contaminantes emergentes y los subproductos de desinfección, y microbiólogos que investigan los mecanismos de transferencia de los genes de la resistencia a los antibióticos. Como científicos que somos, estamos comprometidos con el desarrollo positivo de la sociedad, y, por ello, mantenemos las puertas abiertas para hablar y discutir con todos ustedes respecto a este tema y a otros relacionados con el agua.

*Documento escrito por Wolfgang Gernjak con la colaboración de Joaquim Comas, Ignasi Rodríguez-Roda y María José Farré, investigadores del grupo ICRAtech en el Institut Català de Recerca de l’Aigua (ICRA).

RECONOCIMIENTOS:

  • Los autores quieren agradecer el apoyo del Departament d’Economia i Coneixement del Gobierno catalán a través del Grupo de Investigación Consolidado (ICRA-TECNOLOGÍA – 2017 SGR 1318).

CODA

Este artículo sirve de introducción al próximo Workshop organizado por el ICRA sobre Reutilización de aguas con fines potables que tendrá lugar el próximo 4 de octubre de 2019 de las 10h a las 15h. + INFO AQUÍ.

Inteligencia Artificial y Aguas Potables (y II)

La segunda parte de la charla con Hèctor Monclús sobre Inteligencia Artificial y aguas potables la llevamos a cabo en la ETAP de ATL en Abrera, donde profundizamos en el proyecto DrinkIA y la necesidad de la implicación de los usuarios en lo que se refiere a construir un buen modelo basado en la IA.

Para complementar la entrevista preparamos una breve introducción a la aplicación informática de DrinkIA explicada por el mismo Hèctor Monclús.

Y aquí la entrevista:

Inteligencia Artificial y Aguas Potables (I)

Hèctor Monclús en uno de los laboratorios de la UdG

Esta es la primera parte de la entrevista a Hèctor Monclús sobre aguas potables e Inteligencia Artificial, relacionada con el Proyecto DrinkIA y llevada a cabo en las instalaciones del LEQUIA, en la Universitat de Girona.

Espero que os guste!