Forward Osmosis (II): Proceso

Fuente: TECNOAQUA

En el proceso de Forward Osmosis (FO) o también llamada Ósmosis Directa se utiliza el gradiente de presión osmótica entre una solución muy concentrada (extractora o draw solution) y otra más diluida (de alimentación o feed solution) para conseguir la difusión del agua desde un lado a otro de la membrana semipermeable que las separa. En definitiva, la diferencia de potencial químico es la que hace funcionar este proceso en vez de la diferencia de presión física que actúa en la ósmosis inversa.

Fuente: TECNOAQUA

Aunque ya hace años que se escribe sobre la ósmosis directa, no ha sido hasta este siglo XXI donde esta tecnología ha pasado del laboratorio a ser una realidad palpable. Su interés ha ido creciendo de forma significativa desde 2005 hasta 2012, año en el cual se puso en marcha la primera planta desalinizadora de FO del mundo, en Omán (200 m3/día).

Por otro lado, las posibles ventajas de su aplicación en el tratamiento de aguas complejas sobre las tecnologías actuales serían:

  • Debido a la ausencia de las altas presiones hidráulicas que sí existen en la OI, el gasto energético es mucho menor y los materiales usados no necesitan ser tan resistentes.
  • Mayor flexibilidad y aplicabilidad debido a la baja propensión al fouling así como una mayor facilidad de limpieza derivada de ésta.
  • Se puede usar como tecnología extractora de agua, muy útil para una posterior digestión anaerobia de aguas residuales convencionales.
  • Puede tratar aguas mucho más salinas (con una presión superior a 80 bar) que la OI .

La FO puede diseñarse para tratar un amplio grupo de aguas complejas como por ejemplo las de la industria téxtil, las aguas provenientes de la producción de petróleo y gas, las ricas en nutrientes o los lixiviados de vertedero, pasando por las aguas residuales de la industria nuclear. 

Proceso

Para que el proceso se lleve a cabo, es vital la existencia de la membrana semipermeable. Ésta se instala en un módulo o celda de filtración que permite la entrada y salida tanto de la solución extractora como de la de alimentación. Las celdas suelen tener una configuración de tipo sandwich y la circulación de las soluciones se produce a contracorriente.

Fuente: TECNOAQUA

La cuantificación del agua que atraviesa la membrana se lleva acabo mediante una balanza donde, a medida que avanza el proceso de ósmosis directa, la solución extractora va aumentando de peso. De forma inversa, la solución de alimentación va disminuyendo el suyo paulatinamente.

A pequeña escala el proceso se opera en modo discontínuo y circuito cerrado, donde poco a poco la solución extractora se va diluyendo y la de alimentación concentrando. En mayores dimensiones esta tecnología funciona en contínuo, por lo que la regeneración de la solución extractora se convierte en un factor crítico para una operación óptima del proceso.

Y hasta aquí las bases que fundamentan el proceso de la FO, en el siguiente post me voy a centrar en las membranas y los diferentes factores que impactan en el proceso de ósmosis directa como son los materiales, los tipos de soluciones extractoras, las condiciones óptimas para la operación y el fouling. 

Continúa leyendo Forward Osmosis (II): Proceso

Forward Osmosis (I): Introducción

Bosque de manglares. Fuente: Mangrove Forests

Imaginad 2 líquidos de distinta concentración separados por una membrana donde sólo el agua puede atravesarla. Por un fenómeno llamado difusión las moléculas de agua pasarán del líquido menos concentrado al más concentrado, produciéndose una dilución de esta último. Al final del proceso tendremos las dos soluciones con la misma concentración, este proceso que se produce de forma espontánea en la naturaleza se llama ósmosis, y la tecnología basada en ella Ósmosis Directa (OD) o Forward Osmosis (FO).

La FO es una tecnología de membrana relativamente nueva la cual no necesita ninguna presión externa para llevarse a cabo, lo que se traduce en un proceso de bajo consumo energético. Esta característica la convierte en una alternativa muy interesante comparada con otros tratamientos de membrana presurizados.

La presión que se ejerce en el caso de la FO es la presión osmótica. En el esquema siguiente vemos como gracias al gradiente de presión osmótica las moléculas de agua pasan a través de la membrana para equilibrar la concentración a cada lado de ésta:

Evolución de un sistema basado en la Forward Osmosis. Fuente: Forward Osmosis Tech

Proceso

La FO es una tecnología que puede tratar 2 líquidos al mismo tiempo, el más concentrado y con presión osmótica más elevada (Draw solution) se irá diluyendo paulatinamente a medida que el más diluido y con menor presión osmótica (Feed solution) recorre el camino inverso:

Esquema de funcionamiento de la FO. Fuente: Membranes Journal

Esta peculiaridad abre un abanico de posibilidades no sólo en la desalinización y depuración de aguas sino también por lo que respecta a la gestión y tratamiento de efluentes industriales. Al no necesitar una presión externa para hacer funcionar el proceso, la FO destaca sobretodo por su bajo consumo energético, derivando en unos menores costes de limpieza por fouling debido a la ausencia de compresión. Si a todo esto le añadimos el poder tratar dos efluentes distintos en un solo paso tenemos una tecnología de aplicación sumamente prometedora. 

Potencial

Para terminar con este primer post de introducción (habrá más relacionados con ejemplos de feeddraw solutions, tipos de membranas, estudios piloto y aplicaciones a escala industrial) a la Forward Omosis, hay que destacar que durante estos últimos diez años ha habido un crecimiento exponencial en el número de publicaciones científicas, por lo que demuestra el interés de la comunidad científica y el potencial de aplicación a escala real:

Fuente: Membranes Journal

Bibliografía

· Forward Osmosis Application in Manufacturing Industries: A Short Review. Anita Haupt and André Lerch. Membranes Journal. 23 July 2018.

· ForwardOsmosisTech’s forward osmosis guide (eBook).

· Forward Osmosis Tech (web)

Introducción a las membranas (y V): AnMBR para riego

AnMBR
Esquema de tecnología AnMBR. Scientific Research Publishing

Para cerrar esta serie sobre membranas os presento una aplicación muy interesante. En el número de Mayo/Junio de la revista RETEMA hay un artículo sobre reutilización de agua para riego mediante membranas. Concretamente, el uso de la tecnología AnMBR permite aprovechar tres tipos de recursos: el agua, el biogás y los nutrientes. Voy a explicarlo.

La tecnología AnMBR, una evolución de la MBR, es la aplicación de tecnología de membranas en reactores de tipo anaerobio. Esta configuración es energéticamente más eficiente, ya que la ausencia de oxígeno permite un consumo mucho menor que en la tecnología de lodos activos. Además, del mismo proceso anaerobio se genera biogás mediante las comunidades bacterianas presentes en el biorreactor, una mezcla de gas metano, dióxido de carbono y sulfuro de hidrógeno. Finalmente, los microorganismos que llevan a cabo las reacciones anaerobias en el reactor no son capaces de oxidar ni los compuestos nitrogenados ni los fosforilados. Esto último que sería una desventaja en comparación con otros sistemas que sí eliminan nutrientes se convierte en una oportunidad. El agua depurada resultante, al estar enriquecida con nitrógeno y fósforo puede ser utilizada para riego de cultivos.

AnMBR Comparativa
RETEMA

Aprovechando la importancia que la Comisión Europea da a la economía circular, esta tecnología toma una dimensión muy interesante para afrontar los retos planteados:

  • Evitamos el consumo de agua potable para regadío sustituyéndola por agua regenerada proveniente de aguas residuales urbanas.
  • Reducimos el consumo de fertilizantes aprovechando el enriquecimiento en nutrientes de este agua alternativa.
  • Utilizamos el biogás para el autoconsumo de las instalaciones, avanzando hacia la sostenibilidad económica y energética.

Viendo esta gráfica, queda claro que almenos en España la tecnología AnMBR tiene un gran potencial:

Gràfic consums d'aigua
RETEMA

Continúa leyendo Introducción a las membranas (y V): AnMBR para riego

Introducción a las membranas (IV): Fouling

FOULING

El control del fouling o ensuciamiento de las membranas es el factor clave para conseguir un buen rendimiento del proceso de filtración. Este ensuciamiento depende de las características físicas, químicas y biológicas del agua, el tipo de membrana utilizada y las condiciones de operación.

MBR Fouling
Efectos del fouling. Fuente: MDPI

En función del tipo de fouling las membranas que se van a montar tendrán un coste determinado, un pretratamiento específico y unas limpiezas programadas para recuperar su rendimiento original. La supervisión y control del ensuciamiento se hace a través del flujo (LMH, litros por metro cuadrado y hora filtrados) y el aumento de presión en el sistema:

Fouling-flux
Fuente: The MBR Book

En la imagen anterior hemos visto que un aumento del flujo provoca un mayor ensuciamiento, a partir de este resultado se recomienda mantener unos flujos modestos para evitar la saturación precoz del sistema; es lo que denominamos flujo subcrítico. Si operamos las membranas cerca de estos valores podremos evitar el fouling en las primeras etapas de funcionamiento, aunque no podremos evitar su formación a la larga y tendremos que recurrir al lavado de la membrana para recuperar el rendimiento inicial.

ETAPAS DEL FOULING

Según Simon Judd, uno de los mayores expertos en membranas, hay tres etapas en la formación del fouling:

  1. Acondicionamiento: cuando interactúan unas sustancias presentes en el agua de alimentación llamadas EPS y SMP, polímeros y sustancias solubles de origen microbiano que facilitan la interacción de la biomasa en la superficie de la membrana.
  2. Fouling lento: una vez se han unido los primeros flóculos de biomasa en la superficie, estos siguen cubriéndola de forma parcial sin, de momento, afectar los poros. En esta etapa el flujo todavía no se ve afectado por el proceso de ensuciamiento.
  3. Aumento repentino de la TMP: con unas áreas más sucias que otras, el proceso de filtración se produce en las zonas menos obstruidas, aumentando el flujo por encima de los valores críticos. Esto provoca un aumento repentino de la presión transmembrana, síntoma de fouling avanzado y señal que en breve tendremos que hacer una limpieza para volver a los valores iniciales.

Fouling mechanisms
Las 3 etapas del fouling en membranas. Fuente: The MBR Book

COMO SE PUEDE CONTROLAR?

A pesar de que aún queda bastante para entender el fenómeno del fouling, tenemos cinco estrategias para controlarlo:

  • Diseñando un pretratamiento adecuado del agua de alimentación.
  • Activando los protocolos de limpieza más adecuadas.
  • Reduciendo el flujo hasta unos valores subcríticos.
  • Aumentando la aireación.
  • Modificando a nivel biológico y/o químico el licor mixto.

De estas, algunas son más viables que otras, por ejemplo el aumento de la aireación puede tener costes prohibitivos y en cambio el control del flujo puede actuar en sentido contrario.

TIPOS

Hay diferentes tipos de fouling en función de las sustancias responsables del ensuciamiento: por scaling, de tipo orgánico, de carácter biológico, etc. Podéis profundizar en un artículo anterior mío sobre autopsias de membranas aquí.

UN EJEMPLO VISUAL DE FOULING 

Continúa leyendo Introducción a las membranas (IV): Fouling

Introducción a las membranas (III): Externas Vs Sumergidas

MEMBRANAS EXTERNAS Vs SUMERGIDAS

  • Externas: tienen un elevado coste energético, ya que van presurizadas para forzar la circulación de forma tangencial del agua a través de la membrana:

Cross-flow
Filtración de tipo tangencial o «Cross-Flow». Wikimedia

Para aprovechar la energía consumida en este tipo de membranas se alarga al máximo el camino a seguir del agua de alimentación, añadiendo tantos módulos como permite el sistema:

Biomembrat Wehrle
Membranas externas. Wehrle

  • Sumergidas: estas se encuentran inmersas en el agua de alimentación. El permeado se filtra aplicando el vacío mediante una bomba centrífuga. Esta configuración tiene el inconveniente de no poder trabajar por encima de los 50kPa (0,5 bar) de presión transmembrana. De todas formas, aún tienen un coste energético menor en comparación a las externas.

iMBR
Membranas sumergidas. UNEP

CUAL ES LA MEJOR OPCION?

A pesar de que las sumergidas tienen un coste energético menor, revisando una de las páginas de referencia del sector he visto que las externas también tienen ventajas respecto a las sumergidas, veamos cuáles son:

  • Ocupan menor espacio.
  • Operación y mantenimiento más simple.
  • Reposición y/o ampliación rápida de los módulos en caso de aumento de la carga hidráulica.
  • Pueden operar a elevada concentración de sólidos.

De todas formas, la mejor manera de saber qué tipo de membrana nos conviene verla sobre el terreno, evaluando los pros y contras según el tipo de agua de alimentación, requerimientos de espacio, optimización del consumo energético, OPEX y CAPEX, etc.

Continúa leyendo Introducción a las membranas (III): Externas Vs Sumergidas