Agència Catalana de l’Aigua (y IV): Regeneración y Reutilización de las aguas

Con esta entrevista cierro el ciclo de temas hablando con profesionales de la Agència Catalana de l’Aigua: Saneamiento (Marc Moliner y Jordi Robusté), Presas y Embalses (Carlos Barbero), Calidad de las Masas de Agua (Antoni Munné) y Regeneración y Reutilización de las Aguas Residuales (Carme Arreciado). Muchas gracias a todos ellos por ayudarme a divulgar sobre este mundo que me apasiona, a mis compañeros de viaje (con un especial recuerdo para Eduard Martínez, In Memoriam) por haber compartido unos cuantos cafés hablando de ello y sobretodo muchas gracias a Xavier Duran, contigo empezó todo 😉

Hoy contamos con la presencia de Carme Arreciado, Técnica del Departamento de Regulación de Servicios de Abastecimiento de la ACA. Buenos días y bienvenida Carme, cuéntanos un poco la historia reciente en el impulso a la reutilización del agua desde la ACA (2008-2018).

Buenos días Jordi. La Agència desde hace ya unos años apuesta fuerte por la reutilización de les aguas regeneradas. El uso de este recurso para usos “no potables” permite liberar agua potable para uso de boca. En el año 2008 y con motivo de la gran sequía que hubo en Catalunya, se construyeron instalaciones para mejorar la calidad y augmentar así el uso de agua regenerada, que se considera básico, sobretodo en situaciones de falta de recurso de agua potable. Durante unos años y debido a la crisis económica no se ha potenciado la reutilización, pero actualmente se está trabajando de nuevo en su expansión. Un ejemplo significativo es el convenio de colaboración entre la Agència Catalana de l’Aigua y la AMB firmado el pasado año 2018 con el objetivo de explotar las instalaciones de reutilización de la ERA del Prat del Llobregat

Para clarificar conceptos, agua regenerada, reciclada o reutilizada. Son la misma cosa? En qué se diferencian?

Agua regenerada es aquella agua depurada que ha estado sometida a un tratamiento addicional o complementario, llamado tratamiento de regeneración, que permite adecuar su calidad a los usos a los que se quiere destinar.

Los terminos “agua reciclada” o “agua reutilizada” aunque son utilizados con frecuencia para referirse al agua regenerada, sobretodo el segundo, no son correctos y en consecuencia tenemos que hablar de agua regenerada. Estos términos hacen referencia a un agua ya consumida que se ha vuelto a utilizar en un segundo uso, pero sin implicar que exista un tratamiento que mejore o adecue su calidad.

Existen diferentes tipos de reutilización: la indirecta, la planificada y la directa. Podrías dar un ejemplo de cada una? Cuál se ha desarrollado más hasta la fecha en Catalunya? 

La reutilización indirecta, también llamada no planificada, hace referencia a los efluentes de las depuradoras que vierten al medio receptor, sin ningún tratamiento addicional a los previstos en el Plan de Saneamiento y que posteriormente pueden ser captadas aguas abajo para volver a ser utilizadas. Es un tipo de reutilización que se realiza de manera natural. 

La reutilización directa, o planificada es aquella que hace referencia al uso del agua regenerada para un uso determinado y predefinido. Este tipo de reutilización requiere de una red de distribución o otros medios de transporte para llevarla hasta el usuario final. También necesita un tratamiento adicional de regeneración para conseguir la calidad necesaria para el uso al que se quiere destinar. Esta calidad viene fijada por el RD 1620/2007 y es el tipo de reutilización que la Agència quiere potenciar.

Qué proyectos relacionados con la regeneración y reutilización serán una realidad en un futuro próximo?

Desde la Agència se trabaja para incrementar el volumen en la reutilización planificada, sobretodo de aquellas depuradoras que vierten a mar, ya que es recurso que “se pierde” y interesa reincorporarlo de nuevo al ciclo hidrológico.

De caras al futuro aún queda mucho por hacer. El año pasado se reutilizaron de manera directa en Catalunya 30 hm3, tan solo un 5% del agua depurada en las depuradores públicas.

Evolución del volumen de agua reutilizada. Fuente: ACA

Por lo que respecta a proyectos, tal y como te he comentado antes, el pasado año 2018 se firma con la AMB el convenio de colaboración para la explotación de la ERA del Prat. Este convenio establece tres regímenes de explotación con volúmenes y usos fijados en función de las necesidades del sistema.

Este convenio establece también la necesidad de realizar campañas analíticas para hacer un seguimiento de la calidad del agua regenerada vertida al azud de Molins de Rei. El objetivo de derivar el agua regenerada hasta este punto, a través de un bombeo y más de 10km de conducción, tiene un doble objetivo, por un lado mejorar la calidad del agua del rio con objetivos medio ambientales y por otro incrementar el recurso.

Este mes de mayo, con el seguimiento y la colaboración de un grupo de expertos de diversos sectores, se inicia una primera campaña. con un total de 30 muestras y 352 parámetros a analizar.

En el III Congrés de l’Aigua a Catalunya, la economista e investigadora del CETAQUA Montserrat Termes, proponía mitigar el «yuck factor» propio de la percepción que la gente tiene del agua regenerada involucrando a la ciudadanía mediante programas educativos, centros demostrativos y una mayor transparencia en la gestión de la información. Le añadiría algo más a estas líneas de acción propuestas? 

Estoy totalmente de acuerdo con estas observaciones, falta informar a la ciudadania en relación a este tema. El agua regenerada se asocia a agua depurada y por este motivo es importante realizar estudiós y campañas que sirvan para “demostrar” que se trata de un recurso con una buena calidad.

La campaña analítica como la que se esta realizando actualmente va en este sentido.

Parque Sa Riera (Tossa de Mar), regado con agua regenerada. Foto: CCBrava

Grupo ICRATech (III): grafeno en el tratamiento de aguas

Imagen: Wikimedia

«Imagínate la posibilidad de disponer de un sistema de suministro de agua que dure casi eternamente, resistente al ensuciamiento bacteriano, a la corrosión, y con la posibilidad de detectar y degradar instantáneamente cualquier contaminante potencialmente peligroso. ¿Te imaginas que pudieses pintar las paredes de tu edificio con una pintura que produzca la energía requerida por tus electrodomésticos? ¿Y que el movimiento del agua de la lavadora permitiera generar la energía suficiente para desinfectar y tratar el efluente de manera que pueda reutilizarse para beber? ¿Cómo pueden generar y almacenar energía las tecnologías de tratamiento de agua? ¿Cómo se puede integrar los sensores de calidad del agua con la energía y el tratamiento para auto-regularse? Los materiales de grafeno pueden jugar muy pronto un papel clave para responder a estas preguntas«.

Jelena Radjenovic y Luis-Baptista Pires

El futuro siempre está en tus manos

¿Te imaginas que toda la vida has tenido el futuro en tus manos? Bien, Geim y Novosolev en 2004 aislaron por primera vez el grafeno del grafito utilizando una simple cinta adhesiva. El grafito es el material de las minas de los lápices que has estado utilizando toda tu vida. Ellos ganaron el Premio Nobel por aislar y caracterizar las propiedades electrónicas del grafeno. ¿Habrá un premio nobel escondido en tu bolígrafo? Quizás sí, pero antes vamos a ver qué es el grafeno, este material del que todo el mundo habla últimamente. El grafeno es una simple capa de átomos de carbono organizados en un patrón hexagonal de dos dimensiones. Más duro que el acero y con una gran flexibilidad, uno se lo puede imaginar como una hoja de papel con una estructura de átomos de carbono enlazados. Esto permite la rápida circulación de los electrones que no encuentran resistencia alguna. Sería como conducir por una autopista perfecta sin encontrarse otros coches u obstáculos por el camino… Ahora, si a esa autopista le añades unos árboles por todas partes (grupos funcionales de oxígeno) y algunos agujeros en el suelo (huecos/defectos) te encontrarás con el primo del grafeno, que se llama Óxido de Grafeno (OG). Al revés que el grafeno, el OG es un aislante una vez que presenta una gran resistencia a la circulación de electrones a través de su superficie.

Esta propia limitación del OG le permite ser suspendido en agua para formar tintas. De este modo se puede imprimir, pintar o recubrir con OG casi cualquier material. Resulta fácil de manipular, y es mucho más barato ya que se puede producir masivamente a partir del grafito natural mediante métodos químico o físicos. Y, lo que es más importante, el OG se puede transformar en un material conductor simplemente eliminando los grupos funcionales de oxígeno y reparando los agujeros de su estructura mediante distintos tratamientos (químicos o electroquímicos, entre otros). De este modo nuestra autopista se queda sin apenas árboles (algunos no se pueden eliminar) y, aunque no puedes conducir tan rápido como en la autopista de grafeno, por lo menos puedes circular. Estas propiedades dan paso a la producción de un nuevo material denominado Oxido de Grafeno Reducido (OGR). Este material, debido al arreglo de sus defectos y al preciso control del nivel de grupos funcionales, resulta muy reactivo a interacciones moleculares, es conductor eléctrico y térmico, y activo electroquímicamente. Ha permitido la producción de sensores flexibles y baratos, baterías (supercapacitores) que se pueden cargar y descargar muy rápidamente, mejorar la funcionalidad de células solares, y hasta ser utilizados en aplicaciones antibacterianas. Cabe remarcar que OGR puede ser utilizado como red de soporte y ser dopado con otros átomos como el boro, nitrógeno, azufre (entre otros, la familia del Grafeno no para de crecer) para formar otros materiales con aplicaciones específicas – la carretera se dopa con árboles de otras especies. Una vez que esta familia de materiales 2D con distintas estructuras atómicas y dopajes químicos pueden ser procesados como tintas, podemos construir fácilmente matrices estructurales en 3D y de este modo pasar de una escala nano a la micro y macroestructura. De estos nanomateriales se pueden producir espumas, esponjas o películas, de fácil manipulación para los humanos, pero con propiedades excepcionales debido a sus estructuras específicas nano/micro.

A modo de breve conclusión, los tres aspectos mencionados con anterioridad: 1) posibilidad de producir tintas; 2) posibilidad de dopar químicamente; 3) posibilidad de transformar la estructura intrínseca en dispositivos 3D micro o macro, abren la puerta a desarrollar infinitas configuraciones para aplicaciones específicas.

Imagen: Soumac

Materiales en base a grafeno para el tratamiento del agua

Tanto el OG como el OGR han sido ampliamente explorados para el tratamiento del agua y una de sus aplicaciones más estudiadas es para la producción de nuevas membranas de filtración. Membranas basadas en OG y OGR se han utilizado tanto para la separación por filtración en función del tamaño de las distintas moléculas como para la degradación electroquímica de contaminantes. El OGR, al igual que el OG, tiene propiedades antibacterianas y anti-ensuciamiento, y además puede llegar a evitar la corrosión y ser impermeable a ácidos en función de su microestructura. El OG suspendido en agua puede ser fácilmente filtrado sobre papel de filtro y utilizado como membrana donde los átomos de oxígeno introducen una distancia entre las capas atómicas de carbono. La distancia entre capas de carbono tan precisa puede ser diseñada para permitir pasar a algunas moléculas y retener otras en función de su tamaño; y por ello se han aplicado para la desalinización y la eliminación de contaminantes. Este material también se ha utilizado para controlar la permeabilidad del agua usando electricidad al colocarlo entre dos electrodos y controlar la carga eléctrica en el espacio entre las capas. Utilizando el mismo sistema de membranas con un electrodo de OGR, se pueden degradar electroquímicamente contaminantes cuando pasan a su través. De hecho, la electroquímica es un tema puntero de investigación en el campo del agua porque ofrece un amplio abanico de ventajas respecto a otras tecnologías existentes. Por ejemplo, el único reactivo que utilizan los sistemas electroquímicos son los propios electrones y son capaces de degradar los compuestos más persistentes, como las sustancias poli y perfluoralquilos. Las espumas en base OGR u otras macroestructuras que pueden ser dopadas o no, son candidatos ideales para la degradación electroquímica de contaminantes persistentes en agua. Debido a los grupos funcionales y su estructura desordenada añadido a la estructura 3D con una enorme área superficial, las espumas de OGR poseen puntos catalíticos adicionales que promueven la degradación de contaminantes persistentes, la (electro)sorción y eliminación de metales pesados, y la muerte de bacterias. Las espumas de OGR también pueden ser diseñadas para ser altamente hidrofóbicas, y entonces se aplican para la adsorción y eliminación de aceites del agua.

Las membranas, espumas, esponjas, dopadas o no, basadas en tecnología de OG u OGR mencionadas con anterioridad pueden cambiar el concepto de tratamiento del agua, la reutilización y el suministro, teniendo en cuenta su versatilidad, capacidad infinita de adoptar distintas formas, y facilidad de manejo. OG y OGR son los materiales base más versátiles para la síntesis de coberturas, compositos, y arquitecturas 3D. Con unas expectativas de expansión significativa del mercado para el grafeno en 5-10 años, resulta razonable asumir que la producción a larga escala del OG se expandirá, rebajando costes y convirtiéndolo en una opción todavía más viable económicamente para el tratamiento del agua.

Detalle de la red de una membrana de grafeno. Fuente: Flickr

Superar el reto de la escasez del agua y la contaminación en la gestión de los recursos hídricos requiere una apuesta pionera por las tecnologías más avanzadas de tratamiento del agua. La opción de llevar a cabo una gestión más localizada del ciclo del agua y la introducción de sistemas distribuidos de tratamiento está cada vez más reconocida frente al sistema convencional de tratamiento centralizado al final del colector que se implementó a partir de mediados del siglo XIX. La aplicación de sistemas descentralizados de tratamiento y reutilización como la recogida de aguas pluviales, o la separación, tratamiento y reutilización de aguas grises, representan una oportunidad para adaptarse mejor a la escasez de agua, la precipitación impredecible, y otras consecuencias del cambio climático. Tecnologías inteligentes y de bajo coste como las membranas, espumas y esponjas basadas en OG y OGR, con o sin aplicación de corriente, pueden facilitar un uso seguro y sostenible de los recursos hídricos, disminuyendo nuestra dependencia de las redes centralizadas de agua y energía, y minimizando el impacto ambiental de nuestro consumo de agua.

¿Y ahora qué futuro nos espera?

Además de las aplicaciones basadas en agua, los materiales basados en grafeno han sido foco de atención en el campo de los supercapacitores, los paneles solares, la captación y almacenamiento de energía y los actuadores (materiales que cambian la forma dependiendo del medio). Los sensores basados en OGR, con una impresión personalizada en base a la estructura propuesta o la realidad ambiental, pueden determinar simultáneamente presión, movimiento, humedad, temperatura, cambios en pH, y presencia de bacterias, parámetros vitales para la monitorización del tratamiento de aguas y aguas residuales en los sistemas de distribución. La monitorización y los sistemas de tratamiento en general necesitan estar conectados a una fuente de energía, hecho que le da otra ventaja significativa al OGR: puede producir pequeñas cantidades de energía debido al movimiento del agua, el gradiente de humedad y la presión, o puede aumentar la eficiencia de las tecnologías de energía renovable. La energía producida puede ser almacenada en supercapacitores de carga/descarga rápida, para encender aparatos que dependan de la energía como los sensores o las redes de transmisión de señal. Energía, sensorización, y tratamiento de agua añadido a las propiedades mecánicas de los materiales basados en grafeno como la flexibilidad y la fuerza, abren la puerta a su incorporación en sistemas y locales de difícil implementación/acceso. Los dispositivos multi-tarea auto-alimentados basados en grafeno para la monitorización ambiental y el tratamiento de agua y aguas residuales, supondrán un gran paso adelante y pueden jugar un papel ganador en la lenta pero a su vez inevitable transición hacia un mundo más sostenible. La Industria en el campo del agua en general ha estado menos predispuesta a cambios disruptivos, por o que la investigación académica emergente y las empresas spin-off afrontan una larga travesía para llegar al mercado y sustituir las tecnologías existentes. Sin embargo, la facilidad para la integración y disponer de distintas funcionalidades en un único dispositivo pueden ser factores determinantes para traducir esta investigación en aplicaciones de nuestro día a día y un complemento a las soluciones actuales. Con la evolución de las Tecnologías de la Información, 5G y la inteligencia artificial, la monitorización en línea y en tiempo real permitirá evitar problemas como las pérdidas en las tuberías o la detección de compuestos tóxicos vertidos a una red de distribución de agua o hasta la variación de virus/bacterias en corrientes de aguas. Juntándolo todo, uno se puede imaginar la monitorización y tratamiento avanzado y descentralizado de agua utilizando sistemas modulares que son versátiles, pudiendo tratar y detectar, al mismo tiempo que son eficientes e independientes de la energía. En general, la posibilidad de aplicar estos sistemas en distintos contextos mundiales y con distintos puntos de vista, tanto para gente con un elevado nivel de vida como para comunidades rurales de difícil acceso, supondrá un progreso para la accesibilidad al agua y a la reutilización.

Detalle de espuma de grafeno. Fuente: Nature

Aunque todavía hay mucho campo por investigar para alcanzar una mayor generación de energía a través de los dispositivos de grafeno, y un menor consumo de los sistemas electroquímicos de tratamiento de agua utilizando estructuras electrocatalíticas más eficientes, la combinación de estas propiedades con la habilidad ilimitada de darle forma, pintar o hacer patrones de estas estructuras en arquitecturas futurísticas, supondrán un gran impacto en la manera de considerar el tratamiento del agua. Diseño, Arquitectura y Ciencia, de la mano de la imaginación y creatividad de la Sociedad para rediseñar como utilizamos el tratamiento del agua a nivel individual con plataformas personalizadas eficientes desde un punto de vista energético, supone el objetivo a alcanzar. Suministrando herramientas a la sociedad, y permitiendo a la gente que sea el ingeniero de su propio sistema de tratamiento del agua, cambiará nuestra percepción del recurso y nos permitirá hacer frente a alguno de los mayores retos relacionados con el impacto ambiental de la gestión y tratamiento del agua, haciendo del nuestro un mundo más sostenible. ¿jugará el grafeno un papel clave en este juego para cambiar el futuro? No lo podemos asegurar, pero preguntas y respuestas emergerán de las infinitas posibilidades que ponemos encima de la mesa..

¿Te imaginas que puedes imprimir tu propio sistema de tratamiento del agua? Ya puedes empezar a hacerlo…

Artículo escrito por Jelena Radjenovic y Luis Baptista-Pires

RECONOCIMIENTOS:

  • Los autores quieren agradecer el apoyo del Departament d’Economia i Coneixement del Gobierno catalán a través del Grupo de Investigación Consolidado (ICRA-TECNOLOGÍA – 2017 SGR 1318).

Forward Osmosis (III): Membranas, DS y Fouling

Esquema de funcionamiento de la Ósmosis Directa. Fuente: Yale University

En este tercer artículo, una vez introducido lo que es la Ósmosis Directa y explicado su proceso, voy a hablaros de las características de las membranas utilizadas así como de los tipos de soluciones extractoras y las causas de fouling que afectan al proceso.

1. Membranas

Las primeras membranas que se probaron para el proceso de ósmosis directa (OD) en realidad estaban pensadas para la ósmosis inversa, por lo que no demostraban resultados convincentes debido a fundamentalmente dos características: la hidrofobicidad y la excesiva amplitud (150 micrómetros) de los soportes de dichas membranas. Todo eso cambió cuando se inició el desarrollo de soportes más finos (de unos 50 micrómetros) que permitían flujos mucho más elevados a través de estas membranas.

En el caso de usar membranas de OD para tratamiento de aguas residuales, éstas tendrán más propensión al ensuciamiento y por lo tanto necesitaremos que dispongan de las siguientes características:

  • Una capa separadora ultrafina para conseguir un elevado rendimiento de la solución de rechazo.
  • Una capa de soporte lo más fina posible con elevada estabilidad mecánica, manteniendo durante el mayor tiempo posible las condiciones de operación fijadas.
  • Elevada afinidad por el agua (hidrofília) para mantener el flujo de paso y reducida propensión al fouling.
Materiales

Los materiales más utilizados para la fabricación de las membranas de OD son el triacetato de celulosa (CTA), muy resistente al cloro y poco propenso a la adsorción de aceites grasos y minerales. También es más resistente a variaciones térmicas y degradación química y/o biológica que la misma celulosa. Aún así, la nuevas generaciones de membranas de OD aguantan unas variaciones superiores de pH que el CTA (de 2 a 12 Vs de 3 a 8).

La susceptibilidad al fouling de dichas membranas también dependen de los materiales, por ejemplo, las de CTA (hidrofílicas) tienen menos tendencia a ensuciarse que las de tipo hidrofóbico. Además, las membranas de poliamida (PA) se han desarrollado con la intención de suavizar los ángulos de contacto y permitir una mayor resistencia al fouling.

Investigaciones recientes dedicadas a mejorar la fabricación han dado resultados prometedores centrándose en la adición de agentes formadores de poros para mejorar el flujo de paso por las membranas.

2. Soluciones Osmóticas

Aproximadamente el 40% de las Soluciones Osmóticas o Extractoras (Draw Solutions, DS) estan compuestas de cloruro de sodio debido principalmente a su solubilidad pero tambien a su bajo coste y alto potencial osmótico. Éste se usa a unas concentraciones similares al agua marina (que también se utiliza como DS) con la ventaja de la ausencia de sólidos en suspensión o microorganismos como sí puede tener el agua de mar, provocando un augmento de biofouling en el sistema.

Draw Solutions más usadas en los procesos de ósmosis directa
DS adecuadas para tratar aguas residuales

Para provocar un flujo óptimo de agua en el sistema necesitamos un elevado potencial osmótico que supere al del agua residual a tratar. También debemos considerar de que la DS no sea tóxica, se pueda recuperar fácilmente una vez reconcentrada y además no deteriore el OMBR si hay un bioreactor en el sistema de tratamiento para que no afecte la calidad del lodo ni el crecimiento de los microorganismos.

Las propiedades de transporte también seran significativas cuando escojamos una DS. Por ejemplo, las moléculas grandes tienen menor difusividad y filtran más lentamente a través de la membrana que las pequeñas. Otros factores a tener en cuenta son el pH y la temperatura, sobretodo para evitar casos de scaling por precipitación de calcio, sulfatos o carbonatos.

En el caso concreto de las aguas residuales como solución de alimentación al sistema de OD, ciertos investigadores han propuesto el cloruro de magnesio como DS debido a su alta eficiencia en el potencial osmótico, aunque su coste es mayor que el cloruro de sodio.

En la siguiente tabla se muestran ventajas e inconvenientes de varios DS:

Fuente: Water Research

3. Fouling

La falta de presión adicional debida a la naturaleza del proceso y la tendencia a un flujo de agua bajo condicionan el ensuciamiento de las membranas de OD.

Como podemos ver en la imagen inferior, tenemos cuatro tipos de fouling de los cuales el biofouling es el más abundante en tratamiento de aguas residuales debido a la presencia de microorganismos y las secreciones de polímeros extracelulares propios de las bacterias.

Imagen: Osmosis Directa. Estado
Actual y Perspectivas de Futuro
. Xavier Simon

La acumulación de agentes «foulantes» afecta a la cantidad (flujo del permeado) y a la calidad (concentración de la solución osmótica) del agua producida. Todo esto influye en el rendimiento de las membranas, reduciendo su permeabilidad, aumentando el consumo energético y costes de tratamiento, llegando a estropearlas de forma definitiva.

Detección y Limpieza

Una detección rápida del ensuciamiento de las membranas ayuda a una mayor durabilidad y a recuperar el rendimiento original de éstas. Determinar el potencial de ensuciamiento del agua a tratar puede ayudar a una mejor predicción del fouling, y esto se puede hacer en tiempo real o a posteriori, por ejemplo practicando una autopsia a la membrana para analizar qué tipo de ensuciamiento se ha producido.

Vías de detección de fouling. Fuente: Water Research

Para su limpieza se puede recurrir a métodos de tipo químico o físico. En el caso de utilizar productos químicos su elección dependerá del tipo de ensuciamiento, material del cual esté hecha la membrana y el tipo de agua de alimentación. En el caso de evitar el scaling tenemos varios agentes antiescalantes e inhibidores, además de que hay que tener en cuenta lavados periódicos con (ácidos, bases, oxidantes o agentes quelantes) para mantener a largo plazo el rendimiento de filtración. Un método adicional válido para la recuperación del flujo (hasta un 90%) es el air scouring juntamente con varios detergentes industriales.

Continúa leyendo Forward Osmosis (III): Membranas, DS y Fouling

Desi Esclapez: «el gemelo digital es una tecnología revolucionaria»

Desi Esclapez – Depuración de Aguas del Mediterráneo

Hablamos con Desi Esclapez, Gestora de Innovación de DAM-Aguas, sobre el gemelo digital o Digital Twin, una herramienta tecnológica con mucho potencial para la toma de decisiones en tiempo real en infraestructuras, entre ellas las depuradoras. Concretamente esta tecnología se ha probado en la EDAR de Alzira liderada por GAIA y la participación de DAM, el Catalan Water Partnership, INNOVAE y SASTESA, dando muy buenos resultados hasta el momento.

Más INFO:

ICRA Workshop: «International experiences in Potable Reuse»

Wolfgang Gernjak presentando el Workshop

Aprovechando las sinergias del position paper posteado en este mismo blog sobre reutilización con fines potables, el pasado viernes 4 de octubre estuve de oyente en el workshop organizado por el ICRA sobre este mismo tema aplicado a experiencias internacionales.

Después de una breve introducción a cargo de Wolfgang Gernjak, Investigador Senior del grupo ICRATech, tomó la palabra el primer ponente, el profesor de la Universidad de Berkeley (California) y especialista en recursos hídricos David Sedlak, el cual hizo una aproximación a la situación de la reutilización con fines potables (también conocida como reutilización potable) en Estados Unidos y los posibles avances de cara al futuro. Fue una charla muy interesante donde el profesor Sedlak nos habló de la importancia de la legitimidad de la tecnología para que esta sea aceptada a nivel general. Esta legitimidad, se compone de 3 dimensiones: la pragmática, la moral y la cognitiva.

El segundo ponente, Antoni Munné, Responsable del Departamento de Calidad de las Aguas de la ACA, introdujo su ponencia relacionando el proceso de cambio climático actual en relación a las previsiones de caras a los próximos 10-30 años en materia de precipitaciones y temperaturas medias en la zona mediterránea. En resumen, se espera una mayor variabilidad en las lluvias, un aumento progresivo de las temperaturas medias y una reducción de precipitaciones de entre un 5-10% en 2030 y de un 15-20% en 2050, pudiendo ser éstas de un 15-30% en época estival.

En la segunda parte de su exposición, Munné presentó los avances del estudio monitorizado por el panel de expertos sobre los niveles de contaminantes emergentes en las aguas regeneradas de la ERA de El Prat de Llobregat, con el fin de, en un futuro próximo poder reutilizarlas con fines potables en el área metropolitana de Barcelona.

El tercer y último ponente del workshop, Lluís Sala, Responsable del Área de Abastecimiento y Reutilización del Consorci de la Costa Brava, hizo un diagnóstico sobre la reutilización potable en la Costa Brava explicando el caso paradigmático de El Port de la Selva y el proyecto DEMOWARE. Esta población costera tenía las características adecuadas para poder acoger una parte del proyecto: variabilidad en las precipitaciones, aislada geográficamente, alta demanda en época estival, tratamiento terciario en funcionamiento desde el año 2000, interés de la administración local, etc.

En el apartado de financiación, Sala remarcó que las inversiones cercanas a 1 millón de euros durante un período de 16 años apoyando la reutilización de agua regenerada en el Port de la Selva, han dado muy buenos resultados en materia de eliminación de contaminantes emergentes:

De todas formas, en el desarrollo del proyecto Demoware en Port de la Selva se observaron una serie de problemas inesperados como el incremento de salinidad debido a las sequías de los últimos años en la zona así como la presencia de concentraciones relativamente elevadas de biocidas que son recalcitrantes a ser eliminados:

En definitiva, los resultados del proyecto DEMOWARE en el caso de Port de la Selva instan a seguir profundizando en varios aspectos que quedan abiertos como la forma de evitar la salinización puntual en períodos de sequía (ósmosis inversa?) o la eliminación (quizás con tecnologías de oxidación avanzada) de contaminantes emergentes. Superar estos retos podría ser objeto de un nuevo proyecto complementario que arrojaría luz a los claroscuros planteados en esta ponencia.